论文标题

边界量子相变,带有边界磁场

Boundary Quantum Phase Transitions in the Spin $\frac{1}{2}$ Heisenberg Chain with Boundary Magnetic Fields

论文作者

Pasnoori, Parameshwar R., Lee, Junhyun, Pixley, J. H., Andrei, Natan, Azaria, Patrick

论文摘要

我们考虑带有边界磁场的自旋$ \ frac {1} {2} $ Heisenberg链,并使用Bethe Ansatz和密度矩阵重质化组(DMRG)技术的组合进行分析。我们表明,该系统表现出依赖边界磁场方向的几种不同的接地状态。当两个边界场的相等值大于临界场强度时,基态的每个边缘都会积聚一个分数自旋,该旋转饱和到旋转$ \ frac {1} {4} $,这与表现出对称对称性受保护拓扑相(SPT)的系统相似。与SPT系统不同,海森堡自旋链中的分数边界自旋不是真正的量子数,因为相关操作员的方差并不消失,这是由于没有散装间隙。当边界场采用大于临界场的值时,系统表现出高能结合状态。系统中的所有激发都可以将其整理成塔,其数量取决于系统所表现出的约束状态。随着边界场的变化,除了基地面相变外,我们发现系统可能会经历特征状态相变(EPT),其中希尔伯特空间的塔数量发生变化。我们进一步询问EPT如何通过使用DMRG计算磁化配置文件$ \ langle s^z_j \ rangle $来反映本地基态属性。越过临界场时,我们确定从低边场到高边缘场的明显质量变化。尽管我们无法根据我们的数据得出结论,而EPT对应于基态下的真正相位过渡。

We consider the spin $\frac{1}{2}$ Heisenberg chain with boundary magnetic fields and analyze it using a combination of Bethe ansatz and density matrix renormalization group (DMRG) techniques. We show that the system exhibits several different ground states which depend on the orientation of the boundary magnetic fields. When both the boundary fields take equal values greater than a critical field strength, each edge in the ground state accumulates a fractional spin which saturates to spin $\frac{1}{4}$, which is similar to systems exhibiting symmetry protected topological phases (SPT). Unlike in SPT systems, the fractional boundary spin in the Heisenberg spin chain is not a genuine quantum number since the variance of the associated operator does not vanish, this is due to the absence of a bulk gap. The system exhibits high energy bound states when the boundary fields take values greater than the critical field. All the excitations in the system can be sorted out into towers whose number depends on the number of bound states exhibited by the system. As the boundary fields are varied, in addition to the ground state phase transition, we find that the system may undergo an eigenstate phase transition (EPT) where the number of towers of the Hilbert space changes. We further inquire how the EPT reflects itself on local ground state properties by computing the magnetization profile $\langle S^z_j \rangle$ using DMRG. We identify a clear qualitative change from low edge fields to high edge fields when crossing the critical field. We though are unable to conclude on the basis of our data that EPT corresponds to a genuine phase transition in the ground state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源