论文标题
针对规定奇异性的谐波图的渐近分析
Asymptotic Analysis of Harmonic Maps With Prescribed Singularities
论文作者
论文摘要
这是一系列两篇论文中的第一篇,以建立多个黑洞的质角动量不等式。我们研究了来自3维欧几里德空间域的奇异谐波图,到具有边界双曲线距离与极端Kerr谐波图的双曲线平面。我们证明,每个这样的谐波地图都在极端黑洞的地平线上承认了独特的切线谐波图。将可能的切线图分类并显示为在双曲平面上移动的“极端kerr”大地测量学,取决于两个参数,一个由角动量确定,另一个由圆锥形奇异点确定。此外,还建立了与切线图的收敛速率。同样,提出了渐近平坦的膨胀。这些结果以及Li-Tian [24,25]和Weinstein [35,36]的结果为谐波图提供了完整的规律性理论,从$ \ Mathbb r^3 \ setMinus Z \ setMinus z \ text {-axis} $到$ \ m rathbb h^2 $。该分析还用于证明所谓的接近地平线限制的存在,并计算相关的极端黑洞的近地平线几何形状。
This is the first in a series of two papers to establish the mass-angular momentum inequality for multiple black holes. We study singular harmonic maps from domains of 3-dimensional Euclidean space to the hyperbolic plane having bounded hyperbolic distance to extreme Kerr harmonic maps. We prove that every such harmonic map admits a unique tangent harmonic map at the extreme black hole horizon. The possible tangent maps are classified and shown to be shifted `extreme Kerr' geodesics in the hyperbolic plane that depend on two parameters, one determined by angular momentum and another by conical singularities. In addition, rates of convergence to the tangent map are established. Similarly, expansions in the asymptotically flat end are presented. These results, together with those of Li-Tian [24, 25] and Weinstein [35,36], provide a complete regularity theory for harmonic maps from $\mathbb R^3\setminus z\text{-axis}$ to $\mathbb H^2$ with these prescribed singularities. The analysis is additionally utilized to prove existence of the so called near horizon limit, and to compute the associated near horizon geometries of extreme black holes.