论文标题
Seifert圈子,交叉数和广义结和链接的辫子索引
Seifert circles, crossing number and the braid index of generalized knots and links
论文作者
论文摘要
对于古典链接,ohyama证明了涉及最小交叉数和辫子指数的不平等,然后是从这个武田的动机表现出类似的虚拟链接不平等。在本文中,我们有兴趣研究独立于交叉类型的链接的属性,因此,我们引入了图表和广义的reidemeister型动作的广义交叉点。这项工作的目的是证明上面提到的相同类型的不平等现象,但现在涉及总交叉数和通用结和链接的编织指数。特别是,我们表明结果适用于虚拟奇异链接。
For classical links Ohyama proved an inequality involving the minimal crossing number and the braid index, then motivated from this Takeda showed an analogous inequality for virtual links. In this paper, we are interested in studying properties of links independent of the type of crossings, and for this reason, we introduce generalized crossings for diagrams and generalized Reidemeister-type moves. The aim of this work is to prove the same type of inequality mentioned above but now involving the total crossing number and the braid index of generalized knots and links. In particular, we show that the result holds for virtual singular links.