论文标题

HyperGraph计数和混合$ P $ -SPIN玻璃模型下的副本对称性

Hypergraph Counting and Mixed $p$-Spin Glass Models under Replica Symmetry

论文作者

Dey, Partha S., Wu, Qiang

论文摘要

我们研究了弱的外部场假设下的一般混合$ p $ spin玻璃模型在高温下的波动问题:$ h =ρn^{ - α},ρ> 0,α\ in [1/4,\ infty] $。通过将群集扩展方法扩展到这种通用设置,我们将波动问题转换为超图计数问题,从而获得了新的多重转变现象。我们结果的副产品是从最佳第二次估计中获得的新的关键逆温度。特别是,我们所有的波动结果都达到了阈值。与多元Stein的方法相结合,我们还获得了对一般对称障碍的适当时刻假设下的明确收敛速率。我们的结果还具有几个含义。首先,我们的方法适用于偶数和奇怪的$ p $ spin型号。奇数$ p $ case中的领先集群结构不同,涉及甚至$ p $ case中的群集结构。该组合在说明奇数$ p $ -spin比$ p $更复杂的民间传说中。其次,在混合$ p $ -SPIN设置中,群集结构不同,具体取决于最小有效偶数和奇数$ p $ -spins:$ p_e $和$ p_o $之间的关系。例如,在$ h = 0 $时,有三个子主机:$ p_e <p_o,p_o <p_e <2p_o,p_e \ ge 2p_o $,其中第一个和第三个模型本质上的行为基本上像$ $ p $ - spin模型,仅在第二条制度中,仅在第二条制度中,它更像是混合物。与Auffinger和Ben Acrous的工作相比,这给出了另一个标准,用于对平均场自旋玻璃模型进行分类(Ann。〜prob。〜41(2013),No.〜6,4214--4247),该想法基于球形模型的复杂性计算。第三,我们的框架自然意味着在Bovier和Schertzer的工作中猜想的多尺度波动现象(Probab。TheoleyRelat。Fields(2024))。

We study the fluctuation problems at high temperature in the general mixed $p$-spin glass models under the weak external field assumption: $h= ρN^{-α}, ρ>0, α\in [1/4,\infty]$. By extending the cluster expansion approach to this generic setting, we convert the fluctuation problem as a hypergraph counting problem and thus obtain a new multiple-transition phenomenon. A by-product of our results is a new critical inverse temperature obtained from optimal second moment estimates. In particular, all our fluctuation results hold up to the threshold. Combining with multivariate Stein's method, we also obtain an explicit convergence rate under proper moment assumptions on the general symmetric disorder. Our results have several further implications. First, our approach works for both even and odd pure $p$-spin models. The leading cluster structures in the odd $p$ case are different and more involved than in the even $p$ case. This combinatorially explains the folklore that odd $p$-spin is more complicated than even $p$. Second, in the mixed $p$-spin setting, the cluster structures differ depending on the relation between the minimum effective even and odd $p$-spins: $p_e$ and $p_o$. As an example, at $h=0$, there are three sub-regimes: $p_e<p_o, p_o<p_e<2p_o, p_e\ge 2p_o$, wherein the first and third ones, the mixed model behaves essentially like a pure $p$-spin model, and only in the second regime, it is more like a mixture. This gives another criterion for classifying mean-field spin glass models compared to the work of Auffinger and Ben Arous (Ann.~Probab.~41 (2013), no.~6, 4214--4247), where the idea is based on complexity computations for spherical models. Third, our framework naturally implies a multi-scale fluctuation phenomenon conjectured in the work of Bovier and Schertzer (Probab. Theory Relat. Fields (2024)).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源