论文标题

属于Abelian品种的属曲线的派生类别

Derived categories of curves of genus one and torsors over abelian varieties

论文作者

Ramachandran, Niranjan, Rosenberg, Jonathan

论文摘要

假设$ c $是完美的字段$ f $上的属1属的光滑投射曲线,而$ e $是其雅各布。如果$ c $没有$ f $ - 合理的积分,那么$ c $和$ e $不是同构的,$ c $是$ e $ - torsor,带有$δ(c)\ in H^1(\ text {gal}(\ bar f/f)(\ bar f/f),e(\ bar f))$。然后,$δ(c)$确定\ text {br}(e)/\ text {br}(f)$的类$β\,并且在(扭曲的)相干吊羊$ \ Mathcal d(c)\ xrightArrow {c right xrightArrow {\ gancal} $ n(e)$ n(e)$ arcalcal d(c)$ arc)$(e)(e)(e)(e)(e)(e)(e)(e)(e)我们将此结果推广到更高的维度;也就是说,我们也证明了这是针对阿伯利亚品种的扭转。

Suppose $C$ is a smooth projective curve of genus 1 over a perfect field $F$, and $E$ is its Jacobian. In the case that $C$ has no $F$-rational points, so that $C$ and $E$ are not isomorphic, $C$ is an $E$-torsor with a class $δ(C)\in H^1(\text{Gal}(\bar F/F), E(\bar F))$. Then $δ(C)$ determines a class $β\in \text{Br}(E)/\text{Br}(F)$ and there is a Fourier-Mukai equivalence of derived categories of (twisted) coherent sheaves $\mathcal D(C) \xrightarrow{\cong} \mathcal D(E, β^{-1})$. We generalize this result to higher dimensions; namely, we prove it also for torsors over abelian varieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源