论文标题

两组分波暗物质的宇宙学模拟

Cosmological Simulations of Two-Component Wave Dark Matter

论文作者

Huang, Hsinhao, Schive, Hsi-Yu, Chiueh, Tzihong

论文摘要

Wave(模糊)暗物质($ψ$ dm)由超轻玻色子组成,其中具有粒状光环中的孤子芯。在这里,我们将$ψ$ dm扩展到两个组件,具有不同的粒子质量$ m $,并且仅通过重力耦合,并通过宇宙学模拟研究了所得的孤子 - 哈洛结构。具体而言,我们假设$ψ$ dm包含$ 75 $的主要成分和$ 25 $的较小成分,将主要组分粒子质量固定在$ m _ {\ rm major} = 1 \ times10^{ - 22} { - 22} \,{\ rm ev} $,并探索两种不同的次要粒子粒子,并探索$ m m _ _ _ \ \ \ \ \ \ \ \ \ \ \ \ \ mm {小调} = 3:1 $和$ 1:3 $。对于$ m _ {\ rm major}:m _ {\ rm minor} = 3:1 $,我们发现(i)(i)主要成分和次要的孤子共存,具有可比的质量,并且大致同心。 (ii)孤子峰密度明显低于单组分的对应物,从而导致孤子到旋转的过渡和旋转曲线更平滑。 (iii)两个组分的孤子质量均遵循相同的单组分核心质量关系。与之形成鲜明对比的是,对于$ m _ {\ rm major}:m _ {\ rm minor} = 1:3 $,次要组件孤子无法与稳定的主要组件soliton在一起;因此,对于光环和孤子,总密度曲线都由主要组成部分主导,并紧随单一组件情况。为了支持这一发现,我们提出了一个玩具模型,说明在与深度重力潜力相关的热环境中很难形成孤子。这项工作表明,添加到多组件$ψ$ dm模型中的额外灵活性可以在保留其关键功能的同时,可以在单组分模型上解决观察性张力。

Wave (fuzzy) dark matter ($ψ$DM) consists of ultralight bosons, featuring a solitonic core within a granular halo. Here we extend $ψ$DM to two components, with distinct particle masses $m$ and coupled only through gravity, and investigate the resulting soliton-halo structure via cosmological simulations. Specifically, we assume $ψ$DM contains $75$ per cent major component and $25$ per cent minor component, fix the major-component particle mass to $m_{\rm major}=1\times10^{-22}\,{\rm eV}$, and explore two different minor-component particle masses with $m_{\rm major}:m_{\rm minor}=3:1$ and $1:3$, respectively. For $m_{\rm major}:m_{\rm minor}=3:1$, we find that (i) the major- and minor-component solitons coexist, have comparable masses, and are roughly concentric. (ii) The soliton peak density is significantly lower than the single-component counterpart, leading to a smoother soliton-to-halo transition and rotation curve. (iii) The combined soliton mass of both components follows the same single-component core-halo mass relation. In dramatic contrast, for $m_{\rm major}:m_{\rm minor}=1:3$, a minor-component soliton cannot form with the presence of a stable major-component soliton; the total density profile, for both halo and soliton, is thus dominated by the major component and closely follows the single-component case. To support this finding, we propose a toy model illustrating that it is difficult to form a soliton in a hot environment associated with a deep gravitational potential. The work demonstrates the extra flexibility added to the multi-component $ψ$DM model can resolve observational tensions over the single-component model while retaining its key features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源