论文标题
具有分布不确定性的开关随机系统的有效策略合成
Efficient Strategy Synthesis for Switched Stochastic Systems with Distributional Uncertainty
论文作者
论文摘要
我们引入了一个控制不确定分布的离散时间交换随机系统的框架。特别是,我们考虑具有加性噪声的随机动力学,其分布在于$ \ varepsilon- $ close的歧义集,在瓦斯坦斯坦距离感知中,与名义上的分布相关。我们提出了有效合成分布鲁棒控制策略的算法,以最大程度地提高了使用给定或任意(未指定)时间范围的避免范围的满意度概率,即无界的时间到达。该框架由两个主要步骤组成:有限的抽象和控制合成。首先,我们将开关随机系统的有限抽象构建为\ emph {可靠的马尔可夫决策过程}(可靠的MDP),涵盖了系统的随机性和噪声分布的不确定性。然后,我们综合了一种稳健的策略,可与所得强大的MDP上的分布不确定性。我们采用从最佳运输和随机编程的技术来减少策略综合问题到一组线性程序,并提出一种量身定制和有效的算法来解决它们。将最终的策略正确完善为原始随机系统的切换策略。我们说明了框架对包括线性和非线性开关随机系统的各种案例研究的功效。
We introduce a framework for the control of discrete-time switched stochastic systems with uncertain distributions. In particular, we consider stochastic dynamics with additive noise whose distribution lies in an ambiguity set of distributions that are $\varepsilon-$close, in the Wasserstein distance sense, to a nominal one. We propose algorithms for the efficient synthesis of distributionally robust control strategies that maximize the satisfaction probability of reach-avoid specifications with either a given or an arbitrary (not specified) time horizon, i.e., unbounded-time reachability. The framework consists of two main steps: finite abstraction and control synthesis. First, we construct a finite abstraction of the switched stochastic system as a \emph{robust Markov decision process} (robust MDP) that encompasses both the stochasticity of the system and the uncertainty in the noise distribution. Then, we synthesize a strategy that is robust to the distributional uncertainty on the resulting robust MDP. We employ techniques from optimal transport and stochastic programming to reduce the strategy synthesis problem to a set of linear programs, and propose a tailored and efficient algorithm to solve them. The resulting strategies are correctly refined into switching strategies for the original stochastic system. We illustrate the efficacy of our framework on various case studies comprising both linear and non-linear switched stochastic systems.