论文标题
引力孤子解决方案,用于自耦合的Klein-Gordon和Schrödinger方程
Gravitational soliton solutions to self-coupled Klein-Gordon and Schrödinger equations
论文作者
论文摘要
我们在弯曲的时空中使用klein-gordon方程来构建Schrödinger-Newton问题的相对论类似物,在该问题中,标量粒子生活在其自身概率分布中产生的重力中。从一般相对论的场方程中计算出静态的球形对称度量,无论是直接和由完美的流体假设建模的,该假设使用tolman-oppenheemer-volkov方程来实现质量密度的静水平衡。后者适合于哈特里(Hartree)近似与骨恒星的多体问题。在此弯曲的时空中,klein方程的同时自洽解会产生带有一系列径向激发的孤子。我们将结果与非依赖主义案例进行了比较。
We use the Klein-Gordon equation in a curved spacetime to construct the relativistic analog of the Schrödinger-Newton problem, where a scalar particle lives in a gravitational potential well generated by its own probability distribution. A static, spherically symmetric metric is computed from the field equations of general relativity, both directly and as modeled by a perfect-fluid assumption that uses the Tolman-Oppenheimer-Volkov equation for hydrostatic equilibrium of the mass density. The latter is appropriate for a Hartree approximation to the many-body problem of a bosonic star. Simultaneous self-consistent solution of the Klein--Gordon equation in this curved spacetime then yields solitons with a range of radial excitations. We compare results with the nonrelativistic case.