论文标题
与$ \ mathrm {t} \ bar {\ mathrm {t}} $变形ode/im对应关系
Deforming the ODE/IM correspondence with $\mathrm{T}\bar{\mathrm{T}}$
论文作者
论文摘要
ODE/IM对应关系是经典和量子整合模型之间的确切联系。这项工作的主要目的是证明它在$ \ mathrm {t} \ bar {\ mathrm {t}} $扰动上的两面都保持有效。特别是,我们证明了通过坐标的动态变化从不受干扰的sinh-gordon模型中,从不扰动的模型中获得了相同的burgers-type方程,该方程得出了$ \ \ m mathrm {t} \ bar {\ mathrm {\ mathrm {t t} $。我们的主要结论具有一般有效性,因为该分析很容易适应所有涉及涉及集成量子场理论的已知ODE/IM示例。
The ODE/IM correspondence is an exact link between classical and quantum integrable models. The primary purpose of this work is to show that it remains valid after $\mathrm{T}\bar{\mathrm{T}}$ perturbation on both sides of the correspondence. In particular, we prove that the deformed Lax pair of the sinh-Gordon model, obtained from the unperturbed one through a dynamical change of coordinates, leads to the same Burgers-type equation governing the quantum spectral flow induced by $\mathrm{T}\bar{\mathrm{T}}$. Our main conclusions have general validity, as the analysis may be easily adapted to all the known ODE/IM examples involving integrable quantum field theories.