论文标题
通过Koopman模型预测控制对耦合摆的控制同步
Controlled Synchronization of Coupled Pendulums by Koopman Model Predictive Control
论文作者
论文摘要
我们提出并在实验上证明了一种反馈控制方法,该方法允许同步通过链的一端引起的几个耦合非线性振荡器的链的运动。这项工作中考虑的链是一个一维的摆阵列,该摆在单个轴周围旋转并通过扭转弹簧与相邻的摆相互作用。阵列使用连接到两个边界摆之一的单个扭矩电动机驱动。这代表了frenkel-kontorova模型的机械实现{sine-gordon方程的空间离散版本描述(非线性)波。控制这些系统的主要挑战是:高阶(摆的数量很高),非线性动力学,并且(正如我们在此处设置的问题)仅一个执行器。提出的运动同步问题是参考跟踪问题的特殊情况,其中所有的摆满了共同点或轨迹。特别是,我们证明了同步与稳定平衡(所有的摆),不稳定的平衡(所有的摆)和周期性的轨道(所有的摆旋转)。我们使用Koopman模型预测控制(KMPC),该控制构建非线性系统的线性预测指标,并在经典线性MPC中使用预测器,从而维持较低的计算成本,从而实现实时实现,同时考虑复杂的非线性非线性动力学。
We propose and experimentally demonstrate a feedback control method that allows synchronizing the motion of a chain of several coupled nonlinear oscillators actuated through one end of the chain. The chain considered in this work is a one-dimensional array of pendulums pivoting around a single axis and interacting with adjacent pendulums through torsion springs; the array is actuated using a single torque motor attached to one of the two boundary pendulums. This represents a mechanical realization of the Frenkel-Kontorova model { a spatially discrete version of a sine-Gordon equation describing (nonlinear) waves. The main challenges of controlling these systems are: high order (the number of pendulums can be high), nonlinear dynamics, and (as we set the problem here) only one actuator. The presented problem of synchronization of motion is a special case of the problem of reference tracking, where all pendulums reach a common point or a trajectory. In particular, we demonstrate synchronization to a stable equilibrium (all pendulums downward), unstable equilibrium (all pendulums upward), and a periodic orbit (all pendulums revolving). We use the Koopman Model Predictive Control (KMPC) that constructs a linear predictor of the nonlinear system in a higher-dimensional lifted space and uses the predictor within a classical linear MPC, thereby maintaining low computational cost that allows for a real-time implementation, while taking into account the complex nonlinear dynamics.