论文标题
研究GitHub上AIOPS项目的特征
Studying the Characteristics of AIOps Projects on GitHub
论文作者
论文摘要
IT操作的人工智能(AIOPS)利用AI方法来处理软件系统操作过程中生成的大量数据。先前的工作提出了各种AIOPS解决方案,以支持系统操作和维护中的不同任务,例如异常检测。在这项研究中,我们对开源AIOPS项目进行了深入的分析,以了解实践中AIOPS的特征。我们首先仔细识别GitHub的一组AIOPS项目,并分析其存储库指标(例如,使用的编程语言)。然后,我们定性地检查项目以了解其输入数据,分析技术和目标。最后,我们使用不同的质量指标(例如错误的数量)评估这些项目的质量。为了提供上下文,我们还从GitHub中品尝了两组基线项目:机器学习项目的随机样本和随机的通用项目样本。通过比较我们已确定的AIOPS项目与这些基线之间的不同指标,我们获得了有意义的见解。我们的结果揭示了最近对AIOPS解决方案的兴趣。但是,质量指标表明,AIOPS项目遭受的问题比我们的基线项目还要多。我们还指出了AIOPS方法中最常见的问题,并讨论了解决这些挑战的潜在解决方案。我们的发现为研究人员和从业人员提供了宝贵的指导,使他们能够理解AIOPS实践的现状,并阐明了改善AIOPS较弱方面的不同方式。据我们所知,这项工作是表征开源AIOPS项目的首次尝试。
Artificial Intelligence for IT Operations (AIOps) leverages AI approaches to handle the massive amount of data generated during the operations of software systems. Prior works have proposed various AIOps solutions to support different tasks in system operations and maintenance, such as anomaly detection. In this study, we conduct an in-depth analysis of open-source AIOps projects to understand the characteristics of AIOps in practice. We first carefully identify a set of AIOps projects from GitHub and analyze their repository metrics (e.g., the used programming languages). Then, we qualitatively examine the projects to understand their input data, analysis techniques, and goals. Finally, we assess the quality of these projects using different quality metrics, such as the number of bugs. To provide context, we also sample two sets of baseline projects from GitHub: a random sample of machine learning projects and a random sample of general-purposed projects. By comparing different metrics between our identified AIOps projects and these baselines, we derive meaningful insights. Our results reveal a recent and growing interest in AIOps solutions. However, the quality metrics indicate that AIOps projects suffer from more issues than our baseline projects. We also pinpoint the most common issues in AIOps approaches and discuss potential solutions to address these challenges. Our findings offer valuable guidance to researchers and practitioners, enabling them to comprehend the current state of AIOps practices and shed light on different ways of improving AIOps' weaker aspects. To the best of our knowledge, this work marks the first attempt to characterize open-source AIOps projects.