论文标题
随机压缩的Navier-Stokes方程和不可压缩的极限的耗散量度解决方案
Dissipative Measure Valued Solutions to the Stochastic Compressible Navier-Stokes Equations and Inviscid-Incompressible Limit
论文作者
论文摘要
我们介绍了一个耗散度量的概念,用于随机可压缩的Navier-Stokes方程。从概率的角度来看,这些解决方案是弱的,因为它们既包括驱动维纳过程,又包括概率空间作为解决方案不可或缺的一部分。然后,对于随机可压缩的Navier-Stokes系统,我们建立了相对能量不平等,因此,我们证明了路径弱的唯一性原理。我们还使用相对能量不平等的方程式基础系统的不可压缩限制。
We introduce a concept of dissipative measure valued martingale solutions for stochastic compressible Navier-Stokes equations. These solutions are weak from a probabilistic perspective, since they include both the driving Wiener process and the probability space as an integral part of the solution. Then, for the stochastic compressible Navier-Stokes system, we establish the relative energy inequality, and as a result, we demonstrate the path-wise weak-strong uniqueness principle. We also look at the inviscid-incompressible limit of the underlying system of equations using the relative energy inequality.