论文标题
Weyl共形代数的Hochschild共同体,具有有限模块的系数
Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules
论文作者
论文摘要
在这项工作中,我们发现在所有有限模块中具有系数的Weyl联合保形代数的Hochschild共同体学组。 Weyl共构代数是Virasoro的通用联想形式,相对于位置$ n = 2 $。为了获得此结果,我们将代数离散理论调整为差异代数的情况。
In this work we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality $N=2$. In order to obtain this result we adjust the algebraic discrete Morse theory to the case of differential algebras.