论文标题
带有尖峰编码网络的封闭形式控制
Closed-form control with spike coding networks
论文作者
论文摘要
使用峰值神经网络(SNN)的高效且健壮的控制仍然是一个开放的问题。尽管生物学剂的行为是通过稀疏和不规则的峰值模式产生的,这些模式既可以提供稳健和有效的控制,又可以进行稳健和有效的控制,但是大多数用于控制的人工尖峰神经网络中的活性模式是密集且常规的 - 导致潜在的高效代码。此外,对于大多数现有的控制解决方案解决方案或优化,即使对于完全识别的系统,也必须使其在片上低功率解决方案中的实现复杂化。 SPIKE编码网络(SCN)的神经科学理论提供了一种完全分析的解决方案,用于在复发性尖峰神经网络中实现动力学系统,同时保持不规则,稀疏和强大的尖峰活动 - 但尚不清楚如何将其直接应用于控制问题。在这里,我们通过结合封闭形式的最佳估计和控制来扩展SCN理论。最终的网络可作为尖峰等同于线性 - 季度高斯控制器。面对几种扰动,包括输入和系统噪声,系统扰动和神经沉默,我们证明了对模拟弹簧质量压抑和卡车孔系统的强大尖峰控制。由于我们的方法不需要学习或优化,因此为使用生物学上现实的活动提供了快速有效的特定任务的芯片上尖峰控制器的机会。
Efficient and robust control using spiking neural networks (SNNs) is still an open problem. Whilst behaviour of biological agents is produced through sparse and irregular spiking patterns, which provide both robust and efficient control, the activity patterns in most artificial spiking neural networks used for control are dense and regular -- resulting in potentially less efficient codes. Additionally, for most existing control solutions network training or optimization is necessary, even for fully identified systems, complicating their implementation in on-chip low-power solutions. The neuroscience theory of Spike Coding Networks (SCNs) offers a fully analytical solution for implementing dynamical systems in recurrent spiking neural networks -- while maintaining irregular, sparse, and robust spiking activity -- but it's not clear how to directly apply it to control problems. Here, we extend SCN theory by incorporating closed-form optimal estimation and control. The resulting networks work as a spiking equivalent of a linear-quadratic-Gaussian controller. We demonstrate robust spiking control of simulated spring-mass-damper and cart-pole systems, in the face of several perturbations, including input- and system-noise, system disturbances, and neural silencing. As our approach does not need learning or optimization, it offers opportunities for deploying fast and efficient task-specific on-chip spiking controllers with biologically realistic activity.