论文标题

用于计数稀疏图DP-3色的代数方法

An Algebraic Approach for Counting DP-3-colorings of Sparse Graphs

论文作者

Dahlberg, Samantha L., Kaul, Hemanshu, Mudrock, Jeffrey A.

论文摘要

DP彩色(或对应着色)是列表颜色的概括,自Dvo夏克和邮寄自2015年引入以来,它已广泛研究。作为图形$ g $,$ g $,$ p(g,m)$的色度多项式的类似物,列表彩色功能,$ p _ {\ ell}(\ ell} $ g $ g $ g $, $ p_ {dp}(g,m)$,计算所有可能的$ m $ fold封面上的最小dp颜色数。因此,$ p_ {dp}(g,m)\ le p _ {\ ell}(g,m)\ le p(g,m)$。如果每个图$ g $,$ f(g,a)= p(g,a)$对于某些$ a \ geqχ(g)$表示$ f(g,m)= p(g,m)$对于所有$ m \ geq a $,则功能$ f $是色度粘附的。众所周知,DP颜色函数不是彩色遵循的,但是只有两个已知的图表证明了这一点。假设$ g $是$ n $ - vertex图,$ \ nathcal {h} $是$ g $的3倍封面,在本文中,我们将$ \ mathcal {h} $ a polyenmial $ f_ {g,\ nathcal {h} $ f_ {g,\ Mathcal {h}} $的非零件等于$ g $的$ \ MATHCAL {H} $的颜色。然后,我们使用Alon和Füredi的众所周知的结果对多项式的非二元组数来建立$ p_ {dp}(g,3)$时,当$ 2N> | e(g)| $时,请在$ p_ {dp}(g,3)上建立非平凡的下限。一个简单的结果是,每$ p_ {dp}(g,3)\ geq 3^{n/6} $每$ n $ n $ -vertex planar graph $ g $ girth至少5个,改善了先前已知的$ p_ {dp}(dp}(g,3)$和$ p _和$ p _ {\ ell el} $ p_ {dp}(dp}(g,3)$ {最后,我们使用这种结合来表明有许多图表证明了DP颜色函数的非粘合性粘附性。

DP-coloring (or correspondence coloring) is a generalization of list coloring that has been widely studied since its introduction by Dvořák and Postle in 2015. As the analogue of the chromatic polynomial of a graph $G$, $P(G,m)$, and the list color function, $P_{\ell}(G,m)$, the DP color function of $G$, denoted by $P_{DP}(G,m)$, counts the minimum number of DP-colorings over all possible $m$-fold covers. It follows that $P_{DP}(G,m) \le P_{\ell}(G,m) \le P(G,m)$. A function $f$ is chromatic-adherent if for every graph $G$, $f(G,a) = P(G,a)$ for some $a \geq χ(G)$ implies that $f(G,m) = P(G,m)$ for all $m \geq a$. It is known that the DP color function is not chromatic-adherent, but there are only two known graphs that demonstrate this. Suppose $G$ is an $n$-vertex graph and $\mathcal{H}$ is a 3-fold cover of $G$, in this paper we associate with $\mathcal{H}$ a polynomial $f_{G, \mathcal{H}} \in \mathbb{F}_3[x_1, \ldots, x_n]$ so that the number of non-zeros of $f_{G, \mathcal{H}}$ equals the number of $\mathcal{H}$-colorings of $G$. We then use a well-known result of Alon and Füredi on the number of non-zeros of a polynomial to establish a non-trivial lower bound on $P_{DP}(G,3)$ when $2n > |E(G)|$. An easy consequence of this is that $P_{DP}(G, 3) \geq 3^{n/6}$ for every $n$-vertex planar graph $G$ of girth at least 5, improving the previously known bounds on both $P_{DP}(G, 3)$ and $P_{\ell}(G, 3)$. Finally, we use this bound to show that there are infinitely many graphs that demonstrate the non-chromatic-adherence of the DP color function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源