论文标题

神经网络无法解释:序列基序的选择性推断

Neural Networks beyond explainability: Selective inference for sequence motifs

论文作者

Villié, Antoine, Veber, Philippe, de Castro, Yohann, Jacob, Laurent

论文摘要

在过去的十年中,神经网络已成功地从生物序列中进行预测,尤其是在调节基因组学的背景下。与其他深度学习领域一样,已经设计了工具来提取诸如序列图案之类的功能,这些特征可以解释训练有素的网络做出的预测。在这里,我们打算超越可解释的机器学习和引入地震,这是一种选择性推理程序,以测试这些提取的特征与预测的表型之间的关联。特别是,我们讨论训练单层卷积网络如何正式等同于选择最大化某些关联得分的主题。我们通过将此选择的无限设置定量到大型但有限的网格上,以适应现有的基于采样的推理过程。最后,我们表明,在特定的参数选择下进行采样足以表征通常用于选择性推理的复合零假设 - 远远超出了我们的特定框架。我们在校准,功率和速度方面说明了我们方法的行为,并通过更简单的数据分解策略讨论了其功率/速度权衡。地震为对调节基因组学中使用的神经网络以及基因组广泛关联研究(GWAS)的更强大方法的神经网络的更轻松分析铺平了道路。

Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源