论文标题
随机步行和收缩元素III:外太空和外部自动形态组
Random walks and contracting elements III: Outer space and outer automorphism group
论文作者
论文摘要
从作者上一篇文章的“随机步行和收缩元素I”继续,我们使用某些异构体的有界的测量图像属性(BGIP)在(可能是不对称的)度量上进行了随机步行。作为应用程序,我们表明,自由等级组的通用外部自动形态至少有3个具有不同的前向和向后扩展因子。这回答了Handel和Mosher的问题。
Continuing from the author's previous article 'Random walks and contracting elements I', we study random walks on (possibly asymmetric) metric spaces using the bounded geodesic image property (BGIP) of certain isometries. As an application, we show that a generic outer automorphism of the free group of rank at least 3 has different forward and backward expansion factors. This answers a question of Handel and Mosher.