论文标题

连续的动作太空树搜索材料发现的倒数设计(铸造)框架

A Continuous Action Space Tree search for INverse desiGn (CASTING) Framework for Materials Discovery

论文作者

Banik, Suvo, Loefller, Troy, Manna, Sukriti, Srinivasan, Srilok, Darancet, Pierre, Chan, Henry, Hexemer, Alexander, Sankaranarayanan, Subramanian KRS

论文摘要

快速准确预测最佳晶体结构,拓扑和微观结构对于加速新材料的设计和发现很重要。一个挑战在于各个元素及其组合所呈现的大型结构和组成空间。速度,准确性和可伸缩性是任何逆设计工具的三个需求,可以在如此庞大的空间中有效采样。虽然传统的全球优化方法(例如,基于进化算法,基于随机抽样)证明了可以预测可以用作超硬材料,半导体和光伏材料的新晶体结构的能力,可以等待少数材料,但具有更快的方法,可以使解决方案更快地融入解决方案,具有更好的解决方案,具有更好的解决方案,具有更好的解决方案和高度差异性,并具有更高的尺度。加强学习(RL)方法正在作为能够解决这些问题但主要在离散动作领域运行的强大设计工具。在这项工作中,我们介绍了铸造,这是一个基于RL的可扩展框架,用于晶体结构,拓扑和潜在的微观结构预测。 Casting采用基于RL的连续搜索空间决策树(MCT -MCTS -Monte Carlo Tree搜索)算法,并具有三种重要修改(i)改进搜索空间探索的修改奖励方案(ii)一种“窗口”或“漏斗”或“漏斗”方案,以改善利用和(III)在娱乐过程中以提高娱乐性,以提高自适应搜索,以提高搜索和尺度可观的搜索。使用一组代表性的示例,从金属(例如Ag)到共价系统(例如C和多组分系统(石墨烷,氮化硼和复杂的相关氧化物)),我们证明了铸造新的晶体结构和阶段的铸造的准确性,收敛速度以及铸造的铸造速度。

Fast and accurate prediction of optimal crystal structure, topology, and microstructures is important for accelerating the design and discovery of new materials. A challenge lies in the exorbitantly large structural and compositional space presented by the various elements and their combinations. Speed, accuracy, and scalability are three desirables for any inverse design tool to sample efficiently across such a vast space. While traditional global optimization approaches (e.g., evolutionary algorithm, random sampling based) have demonstrated the ability to predict new crystal structures that can be used as super-hard materials, semiconductors, and photovoltaic materials to name a few, it is highly desirable to develop approaches that converge faster to the solution, have better solution quality, and are scalable to high dimensionality. Reinforcement learning (RL) approaches are emerging as powerful design tools capable of addressing these issues but primarily operate in discrete action space. In this work, we introduce CASTING, which is an RL-based scalable framework for crystal structure, topology, and potentially microstructure prediction. CASTING employs an RL-based continuous search space decision tree (MCTS -Monte Carlo Tree Search) algorithm with three important modifications (i) a modified rewards scheme for improved search space exploration (ii) a 'windowing' or 'funneling' scheme for improved exploitation and (iii) adaptive sampling during playouts for efficient and scalable search. Using a set of representative examples ranging from metals such as Ag to covalent systems such as C and multicomponent systems (graphane, boron nitride, and complex correlated oxides), we demonstrate the accuracy, the speed of convergence, and the scalability of CASTING to discover new metastable crystal structures and phases that meet the target objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源