论文标题

Routenet-Fermi:图形神经网络的网络建模

RouteNet-Fermi: Network Modeling with Graph Neural Networks

论文作者

Ferriol-Galmés, Miquel, Paillisse, Jordi, Suárez-Varela, José, Rusek, Krzysztof, Xiao, Shihan, Shi, Xiang, Cheng, Xiangle, Barlet-Ros, Pere, Cabellos-Aparicio, Albert

论文摘要

网络模型是现代网络的重要块。例如,它们被广泛用于网络计划和优化。但是,随着网络的规模和复杂性的增加,一些模型会出现局限性,例如在排队理论模型中对马尔可夫流量的假设或网络模拟器的高计算成本。机器学习的最新进展,例如图形神经网络(GNN),正在实现新一代的网络模型,这些网络模型是数据驱动的,并且可以学习复杂的非线性行为。在本文中,我们提出了一种自定义GNN模型Routenet-Fermi,该模型具有与排队理论相同的目标,同时在存在现实的交通模型的情况下更加准确。提出的模型可以准确预测网络的延迟,抖动和数据包丢失。我们已经测试了大小增加(最多300个节点)网络中的Routenet-Fermi,其中包括具有混合流量配置文件的样本 - 例如,具有复杂的非马克维亚模型 - 以及任意路由和队列调度配置。我们的实验结果表明,Routenet-Fermi的精度与计算廉价的数据包级模拟器相似,并准确地缩放到较大的网络。当应用于1,000个样本的测试数据集时,我们的模型将产生延迟估计,平均相对误差为6.24%,包括网络拓扑比训练中所见的一个数量级。最后,我们还通过从现实生活网络的物理测试床和数据包痕迹的测量值中评估了Routenet-Fermi。

Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of Markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as Queuing Theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and packet loss of a network. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-Markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and scales accurately to larger networks. Our model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset of 1,000 samples, including network topologies one order of magnitude larger than those seen during training. Finally, we have also evaluated RouteNet-Fermi with measurements from a physical testbed and packet traces from a real-life network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源