论文标题

在不完整的知识图上进行对话推荐的差异推理

Variational Reasoning over Incomplete Knowledge Graphs for Conversational Recommendation

论文作者

Zhang, Xiaoyu, Xin, Xin, Li, Dongdong, Liu, Wenxuan, Ren, Pengjie, Chen, Zhumin, Ma, Jun, Ren, Zhaochun

论文摘要

会话推荐系统(CRS)经常利用外部知识图(kgs)引入丰富的语义信息,并通过自然语言对话推荐相关项目。但是,现有CRS中使用的原始KG通常不完整且稀疏,这限制了推荐的推理能力。此外,只有少数现有研究利用对话环境从KGS动态地完善知识以获得更好的建议。为了解决上述问题,我们提出了关于不完整的KGS对话推荐人(VRICR)的变异推理。我们的关键思想是将自然伴随着CRS的大型对话语料库融合在一起,以增强不完整的KGS;并在对话环境下执行动态知识推理。具体而言,我们将KGS的对话特定子图表示为潜在变量,具有自适应知识图的分类先验。我们提出了一种差异贝叶斯方法,以近似于对话特定子图的后验分布,这不仅利用对话语料库来重组缺失的实体关系,而且还基于对话上下文的上下文动态选择知识。最后,我们注入特定于对话的子图以解码建议和响应。我们在两个基准CRSS数据集上进行实验。实验结果证实了我们提出的方法的有效性。

Conversational recommender systems (CRSs) often utilize external knowledge graphs (KGs) to introduce rich semantic information and recommend relevant items through natural language dialogues. However, original KGs employed in existing CRSs are often incomplete and sparse, which limits the reasoning capability in recommendation. Moreover, only few of existing studies exploit the dialogue context to dynamically refine knowledge from KGs for better recommendation. To address the above issues, we propose the Variational Reasoning over Incomplete KGs Conversational Recommender (VRICR). Our key idea is to incorporate the large dialogue corpus naturally accompanied with CRSs to enhance the incomplete KGs; and perform dynamic knowledge reasoning conditioned on the dialogue context. Specifically, we denote the dialogue-specific subgraphs of KGs as latent variables with categorical priors for adaptive knowledge graphs refactor. We propose a variational Bayesian method to approximate posterior distributions over dialogue-specific subgraphs, which not only leverages the dialogue corpus for restructuring missing entity relations but also dynamically selects knowledge based on the dialogue context. Finally, we infuse the dialogue-specific subgraphs to decode the recommendation and responses. We conduct experiments on two benchmark CRSs datasets. Experimental results confirm the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源