论文标题
开放中的孤子n = 2弦理论
Solitons in Open N=2 String Theory
论文作者
论文摘要
开放的n = 2字符串理论是在四维时空定义的,具有分裂签名(+,+, - , - )。开放n = 2弦理论的字符串场理论动作由四维Wess-Zumino-witten(WZW_4)模型描述。 WZW_4模型的运动方程是YANG方程,等于反式Yang-Mills方程。在本文中,我们通过计算WZW_4模型的动作密度来研究分裂签名中WZW_4模型的孤子型经典解。我们发现,单溶剂溶液的作用密度位于三维超平面上。这表明在开放的n = 2字符串理论中,将有一个编成一个统一的对象,或者等效地,某种三炉子。我们还证明,在时空的渐近区域中,n-溶液的动作密度是n个单solitons的``非线性叠加''。这表明在n = 2个字符串中存在与n个三晶体相交的存在。最后,我们还原为(1+2)维实际时空,以计算孤子溶液的能量密度。我们可以成功评估两索溶液的能量分布,并发现相互作用区域没有奇异性。这意味着在整个区域中存在平滑的相交的核对晶体。还讨论了欧几里得签名中的孤子解决方案。
The open N=2 string theory is defined on the four-dimensional space-time with the split signature (+,+,-,-). The string field theory action of the open N=2 string theory is described by the four-dimensional Wess-Zumino-Witten (WZW_4) model. Equation of motion of the WZW_4 model is the Yang equation which is equivalent to the anti-self-dual Yang-Mills equation. In this paper, we study soliton-type classical solutions of the WZW_4 model in the split signature by calculating the action density of the WZW_4 model. We find that the action density of the one-soliton solutions is localized on a three-dimensional hyperplane. This shows that there would be codimension-one-solitonic objects, or equivalently, some kind of three-branes in the open N=2 string theory. We also prove that in the asymptotic region of the space-time, the action density of the n-soliton solutions is a ``nonlinear superposition'' of n one-solitons. This suggests the existence of intersecting n three-branes in the N=2 strings. Finally we make a reduction to a (1+2)-dimensional real space-time to calculate energy densities of the soliton solutions. We can successfully evaluate the energy distribution for the two-soliton solutions and find that there is no singularity in the interacting region. This implies the existence of smooth intersecting codimension-one branes in the whole region. Soliton solutions in the Euclidean signature are also discussed.