论文标题
来自伽玛射线供电的高能中微子的高能中微子
High-Energy Neutrinos from Gamma-Ray-Faint Accretion-Powered Hypernebulae
论文作者
论文摘要
超级新闻被从进化后的后官序列星到黑洞或中子星星伴侣的高埃德丁顿大传播伴随着积聚的风膨胀。在终止冲击中加速的离子 - 与较慢的,广角式的风向壳相撞,可以通过HADROCON($ PP $)反应($ pp $)与光有关($Pγ$)相互作用产生高能量中微子,与磁盘热和磁盘热和综合的非电脑型光子相互作用。有人提出,一些快速的喷气式超固定发动机可以为一些快速的无线电爆发(FRB)提供动力。尽管与MS-DURATION爆发本身相关的中微子发射很具有挑战性,但某些FRB来源的持续无线电(如果与HyperBulae相关联)可能会导致高能量中微子弥漫性背景通量。如果超级不自然的出生率遵循Steller-Merger瞬态和常见的包膜事件,我们发现它们的体积融合的中微子排放(取决于人口平均质量转移率)可以解释高达$ \ sim25 \%$ $ \%$ $ $ \%的高元中的中子中微子的中子通量,并被Icecube comportation和iCube Volig toservortal and iCuikik and verservoration and baikikikey(Baikikik)(Baikikik)(Baikikik)(Baikikik)(Baikik)(Baikik)(Baikik)(Baikik)(Baikik)(Baikik)(BAWWED)(BAWWED)望远镜。来自Hypernebula的时间平均中微子光谱(取决于种群参数)也可以再现观察到的弥漫性中微子谱。在某些情况下,中微子的发射可能会延伸至> 100 PEV,可通过未来的超高能量中微子观测值检测到。通过星云到Breit-wheeler($γγ$)的较大光学深度可减轻与中微子相互共同生产的Gev-Pev Gamma-rays的逃脱,从而使这些伽马射线媒体中微子源与\ textit {fertit {fermi}的观测相一致。
Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington mass transfer from an evolved post-main sequence star onto a black hole or neutron star companion. The ions accelerated at the termination shock -- where the collimated fast disk winds/jet collide with the slower, wide-angled wind-fed shell -- can generate high-energy neutrinos via hadronic ($pp$) reactions, and photohadronic ($pγ$) interactions with the disk thermal and Comptonized nonthermal background photons. It has been suggested that some fast radio bursts (FRBs) may be powered by such short-lived jetted hyper-accreting engines. Although neutrino emission associated with the ms-duration bursts themselves is challenging to detect, the persistent radio counterparts of some FRB sources -- if associated with hypernebulae -- could contribute to the high energy neutrino diffuse background flux. If the hypernebula birth rate follows that of steller-merger transients and common envelope events, we find that their volume-integrated neutrino emission -- depending on the population-averaged mass-transfer rates -- could explain up to $\sim25\%$ of the high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal-Gigaton Volume Detector (GVD) Telescope. The time-averaged neutrino spectrum from hypernebula -- depending on the population parameters -- can also reproduce the observed diffuse neutrino spectrum. The neutrino emission could in some cases furthermore extend to >100 PeV, detectable by future ultra-high-energy neutrino observatories. The large optical depth through the nebula to Breit-Wheeler ($γγ$) interaction attenuates the escape of GeV-PeV gamma-rays co-produced with the neutrinos, rendering these gamma-ray-faint neutrino sources, consistent with the \textit{Fermi} observations of the isotropic gamma-ray background.