论文标题
Wasserstein Sobolev空间的一般类别:圆柱功能的密度,反射性,均匀的凸性和克拉克森的不等式
The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity, uniform convexity and Clarkson's inequalities
论文作者
论文摘要
我们表明,圆柱体的代数在Wasserstein Sobolev空间中起作用$ H^{1,Q}(\ Mathcal {p} _p(x,x,x,\ mathsf {d}),w_ {p,\ {p,\ mathsf {d}}},\ mathfrak {d}},\ mathfrak {m}) $(P,\ Mathsf {d})$ - WASSERSTEIN SPACE $(\ MATHCAL {P} _p(X,X,\ Mathsf {D}),W_ {P,Mathsf {D})$上的$(Mathsf {d})$ - WASSERSTEIN SPACE $(\ MATHSF {d}),$(Mathsf {d})$ - $(Mathsf {d})$ - $(Mathsf {d})$ - W_ {作为一个应用,我们证明,如果基本的度量空间是可分离的Banach空间$ \ Mathbb {b} $,则Wasserstein Sobolev空间是反射的(sesp。〜均匀地凸出),如果$ \ mathbb {b} $ reflexive是reflexive(sesp。最后,我们还提供了足够的条件,可以使克拉克森(Clarkson)类型不平等的有效性在Wasserstein Sobolev空间中。
We show that the algebra of cylinder functions in the Wasserstein Sobolev space $H^{1,q}(\mathcal{P}_p(X,\mathsf{d}), W_{p, \mathsf{d}}, \mathfrak{m})$ generated by a finite and positive Borel measure $\mathfrak{m}$ on the $(p,\mathsf{d})$-Wasserstein space $(\mathcal{P}_p(X,\mathsf{d}), W_{p, \mathsf{d}})$ on a complete and separable metric space $(X,\mathsf{d})$ is dense in energy. As an application, we prove that, in case the underlying metric space is a separable Banach space $\mathbb{B}$, then the Wasserstein Sobolev space is reflexive (resp.~uniformly convex) if $\mathbb{B}$ is reflexive (resp.~if the dual of $\mathbb{B}$ is uniformly convex). Finally, we also provide sufficient conditions for the validity of Clarkson's type inequalities in the Wasserstein Sobolev space.