论文标题
基于类原型的类型清洁剂用于标签噪声学习
Class Prototype-based Cleaner for Label Noise Learning
论文作者
论文摘要
基于半监督学习的方法是嘈杂标签学习问题的当前SOTA解决方案,该解决方案依赖于学习无监督的标签清洁剂,将培训样品分为标签的套件,以用于清洁数据和未标记的噪声数据集。通常,清洁剂是通过将混合模型拟合到每样本训练损失的分布来获得的。但是,建模过程为\ emph {class nostic},并假设清洁和噪声样本的损失分布在不同类别之间相同。不幸的是,在实践中,由于不同类别的学习难度不同,因此这种假设并不总是存在,因此导致了次优标签噪声分区标准。在这项工作中,我们揭示了这个长期签名的问题,并提出了一个简单但有效的解决方案,称为\ textbf {c} lass \ textbf {p}基于rototype的标签噪声\ textbf {c} lienter(\ textbf {cpc})。与以前的工作同样处理所有类别不同,CPC完全考虑了损失分布异质性,并应用了类感知的调制来分区清洁和噪声数据。 CPC同时利用特征空间中的损失分布建模和类内的一致性正则化,因此可以更好地区分清洁和噪声标签。从理论上讲,我们通过从期望最大化(EM)框架解释方法来证明我们的有效性。广泛的实验是在嘈杂的标签基准CIFAR-10,CIFAR-100,Clotsing1M和Webvision上进行的。结果表明,CPC始终带来所有基准的性能提高。代码和预训练模型将在\ url {https://github.com/hjjpku/cpc.git}上发布。
Semi-supervised learning based methods are current SOTA solutions to the noisy-label learning problem, which rely on learning an unsupervised label cleaner first to divide the training samples into a labeled set for clean data and an unlabeled set for noise data. Typically, the cleaner is obtained via fitting a mixture model to the distribution of per-sample training losses. However, the modeling procedure is \emph{class agnostic} and assumes the loss distributions of clean and noise samples are the same across different classes. Unfortunately, in practice, such an assumption does not always hold due to the varying learning difficulty of different classes, thus leading to sub-optimal label noise partition criteria. In this work, we reveal this long-ignored problem and propose a simple yet effective solution, named \textbf{C}lass \textbf{P}rototype-based label noise \textbf{C}leaner (\textbf{CPC}). Unlike previous works treating all the classes equally, CPC fully considers loss distribution heterogeneity and applies class-aware modulation to partition the clean and noise data. CPC takes advantage of loss distribution modeling and intra-class consistency regularization in feature space simultaneously and thus can better distinguish clean and noise labels. We theoretically justify the effectiveness of our method by explaining it from the Expectation-Maximization (EM) framework. Extensive experiments are conducted on the noisy-label benchmarks CIFAR-10, CIFAR-100, Clothing1M and WebVision. The results show that CPC consistently brings about performance improvement across all benchmarks. Codes and pre-trained models will be released at \url{https://github.com/hjjpku/CPC.git}.