论文标题

全身铰接的人类对象相互作用

Full-Body Articulated Human-Object Interaction

论文作者

Jiang, Nan, Liu, Tengyu, Cao, Zhexuan, Cui, Jieming, zhang, Zhiyuan, Chen, Yixin, Wang, He, Zhu, Yixin, Huang, Siyuan

论文摘要

3D HOI的细粒度捕获增强了人类活动的理解,并促进了下游的视觉任务,包括动作识别,整体场景重建和人类运动综合。尽管它具有重要意义,但现有作品主要假设人类仅使用几个身体部位与刚性对象相互作用,从而限制了它们的范围。在本文中,我们解决了F-Ahoi的具有挑战性的问题,其中整个人体与铰接的物体相互作用,其部分通过可移动关节连接。我们提出了椅子,这是一种大规模的运动捕获F-AHOI数据集,由46名参与者和81个铰接且可固定的物体之间的16.2小时多功能相互作用组成。在整个交互过程中,椅子提供了人类和铰接物体的3D网格,以及现实且物理上合理的全身相互作用。我们显示了具有物体姿势估计的椅子的价值。通过学习HOI中的几何关系,我们设计了第一个利用人类姿势估计的模型来应对全身相互作用期间铰接对象姿势和形状的估计。给定图像和估计的人姿势,我们的模型首先重建了对象的姿势和形状,然后根据先前的相互作用来优化重建。在两个评估设置(例如,有或不知道对象的几何/结构)下,我们的模型明显优于基准。我们希望主席能够促进社区促进更细粒度的互动理解。我们将使数据/代码公开可用。

Fine-grained capturing of 3D HOI boosts human activity understanding and facilitates downstream visual tasks, including action recognition, holistic scene reconstruction, and human motion synthesis. Despite its significance, existing works mostly assume that humans interact with rigid objects using only a few body parts, limiting their scope. In this paper, we address the challenging problem of f-AHOI, wherein the whole human bodies interact with articulated objects, whose parts are connected by movable joints. We present CHAIRS, a large-scale motion-captured f-AHOI dataset, consisting of 16.2 hours of versatile interactions between 46 participants and 81 articulated and rigid sittable objects. CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process, as well as realistic and physically plausible full-body interactions. We show the value of CHAIRS with object pose estimation. By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation to tackle the estimation of articulated object poses and shapes during whole-body interactions. Given an image and an estimated human pose, our model first reconstructs the pose and shape of the object, then optimizes the reconstruction according to a learned interaction prior. Under both evaluation settings (e.g., with or without the knowledge of objects' geometries/structures), our model significantly outperforms baselines. We hope CHAIRS will promote the community towards finer-grained interaction understanding. We will make the data/code publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源