论文标题

通过神经网络在迷宫解决任务中对人眼运动进行建模

Modeling Human Eye Movements with Neural Networks in a Maze-Solving Task

论文作者

Li, Jason, Watters, Nicholas, Yingting, Wang, Sohn, Hansem, Jazayeri, Mehrdad

论文摘要

从平稳地追求移动物体到在视觉搜索过程中迅速转移凝视,人类在不同情况下采用各种眼动策略。尽管眼睛的运动为精神过程提供了丰富的窗口,但众所周知,构建眼睛运动的生成模型是困难的,并且至今,指导眼动的计算目标在很大程度上仍然是一个谜。在这项工作中,我们在典型的空间计划任务(迷宫解决方案)的背景下解决了这些问题。我们从人类受试者中收集了眼动数据,并使用新型的可区分体系结构来凝视固定和凝视的转移,从而建立了深层的眼动模型。我们发现,人眼运动是最好通过一个模型来预测的,该模型被优化,不要尽可能有效地执行任务,而是对穿越迷宫的对象进行内部模拟。这不仅提供了此任务中眼动的生成模型,而且还提出了一种计算理论,即人类如何解决任务,即人类使用心理模拟。

From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源