论文标题

矩阵产品渠道:变体优化的量子张量网络,以减轻噪声并减少变异量子eigensolver的误差

Matrix product channel: Variationally optimized quantum tensor network to mitigate noise and reduce errors for the variational quantum eigensolver

论文作者

Filippov, Sergey, Sokolov, Boris, Rossi, Matteo A. C., Malmi, Joonas, Borrelli, Elsi-Mari, Cavalcanti, Daniel, Maniscalco, Sabrina, García-Pérez, Guillermo

论文摘要

量子处理单元在硬件级别上增强纠缠,并在分子和分子间化学键中对高度相关的电子状态进行物理模拟。变性量子本质量器为基态模拟提供了硬件有效的工具箱;但是,精确的限制。即使在没有噪声的情况下,算法也可能导致能量估计,特别是在某些较浅的ANSATZ类型的情况下。噪声还会降低纠缠并阻碍基态能量估计(尤其是在噪声未完全表征的情况下)。在这里,我们开发了一种方法来利用通过信息完整测量结果提供的量子 - 古典界面,以在硬件纠缠助推器上使用经典软件来减少ANSATZ和噪声相关的错误。我们使用量子通道的张量网络表示,该量子通道将嘈杂的状态驱动到地面。张量网络是构造完全正面的映射,但是我们详细介绍了使痕量保存条件局部的,以激活广泛的变分优化。这种方法通过在Qubits之间建立其他相关性并将其降解,从而使无噪声的能量达到了触手可及的能量。通过有形纠缠分析拉伸水分子的示例,我们认为使用量子硬件和经典软件的混合策略优于纯粹的经典策略,前提是经典部分具有相同的债券维度。提出的优化算法扩展了降解方法的种类,并促进了对变形分子的能量景观的更准确研究。该算法可以作为药物设计背景下蛋白质配体复合物的量子硬件模拟的最终后处理步骤。

Quantum processing units boost entanglement at the level of hardware and enable physical simulations of highly correlated electron states in molecules and intermolecular chemical bonds. The variational quantum eigensolver provides a hardware-efficient toolbox for ground state simulation; however, with limitations in precision. Even in the absence of noise, the algorithm may result into a biased energy estimation, particularly with some shallower ansatz types. Noise additionally degrades entanglement and hinders the ground state energy estimation (especially if the noise is not fully characterized). Here we develop a method to exploit the quantum-classical interface provided by informationally complete measurements to use classical software on top of the hardware entanglement booster for ansatz- and noise-related error reduction. We use the tensor network representation of a quantum channel that drives the noisy state toward the ground one. The tensor network is a completely positive map by construction, but we elaborate on making the trace preservation condition local so as to activate the sweeping variational optimization. This method brings into reach energies below the noiseless ansatz by creating additional correlations among the qubits and denoising them. Analyzing the example of the stretched water molecule with a tangible entanglement, we argue that a hybrid strategy of using the quantum hardware together with the classical software outperforms a purely classical strategy provided the classical parts have the same bond dimension. The proposed optimization algorithm extends the variety of noise mitigation methods and facilitates the more accurate study of the energy landscape for deformed molecules. The algorithm can be applied as the final postprocessing step in the quantum hardware simulation of protein-ligand complexes in the context of drug design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源