论文标题

VSVC:基于语音纹理选择和语音转换对关键字发现的后门攻击

VSVC: Backdoor attack against Keyword Spotting based on Voiceprint Selection and Voice Conversion

论文作者

Cai, Hanbo, Zhang, Pengcheng, Dong, Hai, Xiao, Yan, Ji, Shunhui

论文摘要

基于深神经网络(DNNS)的关键字斑点(KWS)在语音控制方案中取得了巨大成功。但是,对这种基于DNN的KWS系统的培训通常需要大量的数据和硬件资源。制造商经常将此过程委托给第三方平台。这使得训练过程无法控制,攻击者可以通过操纵第三方培训数据来植入模型中的后门。有效的后门攻击可以迫使模型在某些条件下(即触发器)做出指定的判断。在本文中,我们根据语音选择和语音转换设计了一个后门攻击方案,缩写为VSVC。实验结果表明,在四个受害者模型中毒害训练数据的1%时,VSVC是可行的,可以在四个受害者模型中获得接近97%的平均攻击成功率。

Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源