论文标题
桥梁的桥接颈部和剪切式介导的玻璃中的拉伸衰竭
Bridging necking and shear-banding mediated tensile failure in glasses
论文作者
论文摘要
在高温和/或高应变率下,颈部介导的玻璃介导的玻璃的拉伸失效,剪切循环介导的拉伸拉伸衰竭之间的过渡,使用金属玻璃和原子仿真的拉伸实验进行了研究。我们通过实验和模拟表明,这种转变是通过一系列宏观失败模式发生的,该模式通过最终的拉伸强度参数化。使用大规模的原子模拟通过实验分裂学证实的大规模原子模拟在失败之前进行定量分析时空动力学,这揭示了剪切驱动的可塑性和扩张驱动的空隙形成(空穴)控制各种宏观失败模式的集体演化和相互相互作用。特别是,我们发现在全球故障时,载荷方向上最大腔的大小表现出以固定应变速率对温度的非单调依赖性,这是根据剪切和扩张驱动的可塑性之间的相互作用合理化的。我们还发现,最大的腔体尺度的大小具有未构造样品的横截面区域。这些结果揭示了玻璃的拉伸破坏,并强调了开发玻璃的弹性塑料组成模型的必要性,这些模型均包含剪切和扩张驱动的不可逆过程。
The transition between necking-mediated tensile failure of glasses, at elevated temperatures and/or low strain-rates, and shear-banding-mediated tensile failure, at low temperatures and/or high strain-rates, is investigated using tensile experiments on metallic glasses and atomistic simulations. We experimentally and simulationally show that this transition occurs through a sequence of macroscopic failure patterns, parametrized by the ultimate tensile strength. Quantitatively analyzing the spatiotemporal dynamics preceding failure, using large scale atomistic simulations corroborated by experimental fractography, reveals how the collective evolution and mutual interaction of shear-driven plasticity and dilation-driven void formation (cavitation) control the various macroscopic failure modes. In particular, we find that at global failure, the size of the largest cavity in the loading direction exhibits a nonmonotonic dependence on the temperature at a fixed strain rate, which is rationalized in terms of the interplay between shear- and dilation-driven plasticity. We also find that the size of the largest cavity scales with the cross-sectional area of the undeformed sample. These results shed light on tensile failure of glasses, and highlight the need to develop elasto-plastic constitutive models of glasses incorporating both shear- and dilation-driven irreversible processes.