论文标题

通过Finslerian几何形状识别潜在距离

Identifying latent distances with Finslerian geometry

论文作者

Pouplin, Alison, Eklund, David, Ek, Carl Henrik, Hauberg, Søren

论文摘要

Riemannian几何形状为我们提供了强大的工具,可以在保留数据的基础结构的同时探索生成模型的潜在空间。潜在空间可以用riemannian度量装备,并从数据歧管中退回。使用此度量,我们可以系统地导航依赖于定义为两个点之间最短曲线的空间。生成模型通常是随机的,导致数据空间,riemannian度量和地球化学也是随机的。随机物体充其量是不切实际的,最糟糕的是无法操纵。一个常见的解决方案是通过其预期近似随机回调度量。但是,从这种预期的riemannian度量中得出的大地测量学并不对应于预期的长度最小曲线。在这项工作中,我们提出了另一个指标,该指标明确地将回值指标的预期长度明确降至最低。我们显示该度量标准定义了一个鳍度量标准,并将其与预期的Riemannian指标进行了比较。在高维度中,我们证明这两个指标都以$ o \ left的速率(\ frac {1} {d} {d} \ right)$相互收敛。这种收敛意味着已建立的预期riemannian度量是理论上更接地的鳍度量指标的准确近似。这为使用预期的Riemannian指标进行实际实施提供了理由。

Riemannian geometry provides us with powerful tools to explore the latent space of generative models while preserving the underlying structure of the data. The latent space can be equipped it with a Riemannian metric, pulled back from the data manifold. With this metric, we can systematically navigate the space relying on geodesics defined as the shortest curves between two points. Generative models are often stochastic, causing the data space, the Riemannian metric, and the geodesics, to be stochastic as well. Stochastic objects are at best impractical, and at worst impossible, to manipulate. A common solution is to approximate the stochastic pullback metric by its expectation. But the geodesics derived from this expected Riemannian metric do not correspond to the expected length-minimising curves. In this work, we propose another metric whose geodesics explicitly minimise the expected length of the pullback metric. We show this metric defines a Finsler metric, and we compare it with the expected Riemannian metric. In high dimensions, we prove that both metrics converge to each other at a rate of $O\left(\frac{1}{D}\right)$. This convergence implies that the established expected Riemannian metric is an accurate approximation of the theoretically more grounded Finsler metric. This provides justification for using the expected Riemannian metric for practical implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源