论文标题

随机六个顶点模型的大量法律

Strong law of large numbers for the stochastic six vertex model

论文作者

Drillick, Hindy, Lin, Yier

论文摘要

我们考虑从步骤初始数据开始的不均匀随机六个顶点模型。我们证明它几乎可以肯定地收敛到确定性极限形状。为了获得证明,我们将随机六个顶点模型映射到离散Hammersley过程的变形版本。然后,我们构造了该模型的彩色版本,并应用了Liggett的超脱脂性Ergodic定理。彩色模型的构建包括使用布尔型产品的新想法,该产品概括并简化了Arxiv中使用的方法:2204.11158。

We consider the inhomogeneous stochastic six vertex model with periodicity starting from step initial data. We prove that it converges almost surely to a deterministic limit shape. For the proof, we map the stochastic six vertex model to a deformed version of the discrete Hammersley process. Then we construct a colored version of the model and apply Liggett's superadditive ergodic theorem. The construction of the colored model includes a new idea using a Boolean-type product, which generalizes and simplifies the method used in arXiv:2204.11158.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源