论文标题

基于对毫米波车辆通信的深入增强学习的联合继电器选择和光束管理

Joint Relay Selection and Beam Management Based on Deep Reinforcement Learning for Millimeter Wave Vehicular Communication

论文作者

Kim, Dohyun, Castellanos, Miguel R., Heath Jr, Robert W.

论文摘要

合作继电器通过提供数据传输的多种途径来提高无线网络中的可靠性和覆盖范围。继电器将在更高频段的车辆网络中发挥至关重要的作用,在较高的频带中,移动性和频繁的信号阻塞会导致链路中断。为了确保继电器辅助车辆网络中的连通性,应设计继电器选择策略以有效地找到未封锁的继电器。受移动毫米波(MMWave)网络中梁管理的最新进展的启发,本文解决了以下问题:如何从光束管理中选择最小的开销,如何选择最佳的继电器?在这方面,我们制定了一个顺序的决策问题,以共同优化继电器选择和光束管理。我们建议使用梁指数和梁测量的马尔可夫特性,基于深度加固学习(DRL)提出联合继电器选择和梁管理政策。拟议的基于DRL的算法学习适应动态通道条件和流量模式的时变阈值。数值实验表明,所提出的算法在没有事先通道知识的情况下优于基准。此外,基于DRL的算法可以在快速变化的通道下保持高光谱效率。

Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths for data transmission. Relaying will play an essential role in vehicular networks at higher frequency bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks, this paper address the question: how can the best relay be selected with minimal overhead from beam management? In this regard, we formulate a sequential decision problem to jointly optimize relay selection and beam management. We propose a joint relay selection and beam management policy based on deep reinforcement learning (DRL) using the Markov property of beam indices and beam measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the dynamic channel conditions and traffic patterns. Numerical experiments demonstrate that the proposed algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency under fast-varying channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源