论文标题
有效场理论中的动力黑洞熵
Dynamical Black Hole Entropy in Effective Field Theory
论文作者
论文摘要
在最近的工作中,荷兰,科瓦克人和Reall建立在先前的墙壁上,为重力有效野外理论(EFTS)的动态黑洞熵提供了定义。该熵满足了黑洞力学的第二定律,可以在固定的黑洞周围的扰动中进行二次秩序。我们确定了4D真空引力的EFT的明确形式,包括最多6个衍生物的作用中的术语。一个开放的问题涉及黑洞熵定义的规格不变性。我们表明,量规不变性可用于真空重力(最多6个衍生物),但表明当包括8个衍生术语时,它可能会失败。我们通过将其视为具有消失的6个衍生术语的EFT来确定爱因斯坦高斯理论的熵。
In recent work, Hollands, Kovács and Reall have built on previous work of Wall to provide a definition of dynamical black hole entropy for gravitational effective field theories (EFTs). This entropy satisfies a second law of black hole mechanics to quadratic order in perturbations around a stationary black hole. We determine the explicit form of this entropy for the EFT of 4d vacuum gravity including terms in the action with up to 6 derivatives. An open question concerns the gauge invariance of this definition of black hole entropy. We show that gauge invariance holds for the EFT of vacuum gravity with up to 6 derivatives but demonstrate that it can fail when 8 derivative terms are included. We determine an entropy for Einstein-Gauss-Bonnet theory by treating it as an EFT with vanishing 6 derivative terms.