论文标题
使用图表示学习和链接预测的持有人建议
Holder Recommendations using Graph Representation Learning & Link Prediction
论文作者
论文摘要
由于不断变化的市场情景,对资金或ETF等金融产品(例如资金或ETF)的领先建议在投资领域可能具有挑战性,并且难以捕捉金融持有人的心态及其理念。当前方法表面基于某些产品分类和诸如收益,费用,类别等属性等属性,以向投资者提出类似的产品,这些产品可能无法整体捕获持有人的投资行为。其他报告的作品对机构持有人的意识形态进行了主观分析。本文提出了一个全面的数据驱动框架,用于通过使用交易历史记录,资产流和特定于产品的属性来在持有者的金融产品中开发铅建议系统,例如资金。该系统通过考虑所有进行的投资交易,并收集可能的元信息来检测持有人的投资概况/角色,例如投资预期和投资行为,从而隐含地假设持有人的权益。本文着重于框架的持有人建议部分,该组件使用多种属性采用双方图表表示财务持有人和资金,并进一步采用图形模型来进行学习表示,然后是链接预测模型,用于对未来期间的排名建议。将所提出方法的性能与基线模型(即TOUP-K(50、100、200)建议的公制命中率基于内容的过滤方法)进行了比较。我们发现,所提出的图ML解决方案的表现优于基线的绝对42%,22%和14%的偏见,并且在TOP-K建议的命中率方面,完全看不见的持有人的绝对偏差为18%,19%和18%:分别为50、100、100和200。
Lead recommendations for financial products such as funds or ETF is potentially challenging in investment space due to changing market scenarios, and difficulty in capturing financial holder's mindset and their philosophy. Current methods surface leads based on certain product categorization and attributes like returns, fees, category etc. to suggest similar product to investors which may not capture the holder's investment behavior holistically. Other reported works does subjective analysis of institutional holder's ideology. This paper proposes a comprehensive data driven framework for developing a lead recommendations system in holder's space for financial products like funds by using transactional history, asset flows and product specific attributes. The system assumes holder's interest implicitly by considering all investment transactions made and collects possible meta information to detect holder's investment profile/persona like investment anticipation and investment behavior. This paper focusses on holder recommendation component of framework which employs a bi-partite graph representation of financial holders and funds using variety of attributes and further employs GraphSage model for learning representations followed by link prediction model for ranking recommendation for future period. The performance of the proposed approach is compared with baseline model i.e., content-based filtering approach on metric hits at Top-k (50, 100, 200) recommendations. We found that the proposed graph ML solution outperform baseline by absolute 42%, 22% and 14% with a look ahead bias and by absolute 18%, 19% and 18% on completely unseen holders in terms of hit rate for top-k recommendations: 50, 100 and 200 respectively.