论文标题

潜在高斯模型中比例参数的设计和结构依赖性先验

Design and Structure Dependent Priors for Scale Parameters in Latent Gaussian Models

论文作者

Gardini, Aldo, Greco, Fedele, Trivisano, Carlo

论文摘要

可以通过潜在的高斯模型来描述许多用于数据的常见相关结构。当进行贝叶斯推论时,需要为规则组件的标尺参数设置先前的分布,并可能允许合并先验信息。这项任务特别精致,文献中的许多贡献致力于研究此类方面。我们专注于以下事实:比例参数以复杂的方式控制模型组件的先前变异性,因为其分散也受相关结构和设计的影响。为了克服可能混淆先前启发步骤的问题,我们建议用户指定模型组件分散的边际先验,从而整合了比例参数,结构和设计。然后,我们通过分析得出比例参数的隐含先验。讨论了一项旨在显示估计剂采样属性的行为的模拟研究的结果,讨论了拟议的先前启发策略。最后,探索了一些实际数据应用程序,以研究模型组件之间解释方差的事先敏感性和分配。

Many common correlation structures assumed for data can be described through latent Gaussian models. When Bayesian inference is carried out, it is required to set the prior distribution for scale parameters that rules the model components, possibly allowing to incorporate prior information. This task is particularly delicate and many contributions in the literature are devoted to investigating such aspects. We focus on the fact that the scale parameter controls the prior variability of the model component in a complex way since its dispersion is also affected by the correlation structure and the design. To overcome this issue that might confound the prior elicitation step, we propose to let the user specify the marginal prior of a measure of dispersion of the model component, integrating out the scale parameter, the structure and the design. Then, we analytically derive the implied prior for the scale parameter. Results from a simulation study, aimed at showing the behavior of the estimators sampling properties under the proposed prior elicitation strategy, are discussed. Lastly, some real data applications are explored to investigate prior sensitivity and allocation of explained variance among model components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源