论文标题
使用暴露加权Kaplan-Meier估计量的逆概率估算到事件结果的归因分数
Estimation of the attributable fraction for time to event outcomes using an inverse probability of exposure weighted Kaplan-Meier estimator
论文作者
论文摘要
归因于人群的旨在量化结果(例如,疾病)的比例(例如,疾病),如果人口中没有人接触给定的暴露,则可以避免。因此,该数量在流行病学和公共卫生中起着至关重要的作用,尤其是指导政策,干预措施或评估由于特定暴露而评估疾病的负担。已经提出了各种统计方法使用观察数据来估计可归因的部分。当使用事件时间数据时,这些公式中有几个产生无效的结果。可以使用替代性有效公式,但几乎不使用。我们提出了一个可归因分数的新估计器,该估计值在概念上是简单且易于实现的使用常见统计软件。我们提出的估计器利用Kaplan-Meier估计器来解决审查和潜在的非比例危害,以及控制混淆的逆概率加权。提出了非参数bootstrap来产生推断。一项模拟研究用于说明和将我们提出的估计量与几种替代方案进行比较。结果显示了许多常用的传统方法的偏见以及我们在工作假设下的估计量的有效性。
Population attributable fractions aim to quantify the proportion of the cases of an outcome (for example, a disease) that would have been avoided had no individuals in the population been exposed to a given exposure. This quantity thus plays a crucial role in epidemiology and public health, notably to guide policies, interventions or to assess the burden of a disease due to a particular exposure. Various statistical methods have been proposed to estimate attributable fractions using observational data. When time-to-event data are used, several of these formulas yield invalid results. Alternative valid formulas are available but remain scarcely used. We propose a new estimator of the attributable fraction that is both conceptually simple and easy to implement using common statistical software. Our proposed estimator makes use of the Kaplan-Meier estimator to address censoring and potentially non-proportional hazards, as well as inverse probability weighting to control confounding. Nonparametric bootstrap is proposed to produce inferences. A simulation study is used to illustrate and compare our proposed estimator to several alternatives. The results showcase the bias of many commonly used traditional approaches and the validity of our estimator under its working assumptions.