论文标题
在$ l^p $框架中,在各种边界条件的$ l^p $框架中,在一维空间中的阻尼波方程解决方案的指数衰减
Exponential decay of solutions of damped wave equations in one dimensional space in the $L^p$ framework for various boundary conditions
论文作者
论文摘要
我们在一个维波方程的溶液中建立了dirichlet,neumann和动态边界条件的阻尼波方程的溶液,其中阻尼系数是空间和时间的函数。该分析基于对与Riemann不变性相关的相应双曲系统的研究。研究这些系统的关键要素是使用内部耗散能量在平均意义上估计解决方案及其平均值的差异。
We establish the decay of the solutions of the damped wave equations in one dimensional space for the Dirichlet, Neumann, and dynamic boundary conditions where the damping coefficient is a function of space and time. The analysis is based on the study of the corresponding hyperbolic systems associated with the Riemann invariants. The key ingredient in the study of these systems is the use of the internal dissipation energy to estimate the difference of solutions with their mean values in an average sense.