论文标题
锤图上免费费米子的多部分信息
Multipartite information of free fermions on Hamming graphs
论文作者
论文摘要
我们研究了在锤子图上定义的自由屈服模型的基础状态下的多方信息和纠缠措施。使用邻接矩阵的已知对角线化,我们解决了模型并构建了基态相关矩阵。此外,当子系统由嵌入在较大较大的$ N $的锤子锤子子图组成时,我们发现切碎相关矩阵的所有特征值。这些结果使我们能够找到一个确切的公式,用于纠缠不相交图以及相互和三方信息的纠缠熵。我们使用这些措施的确切公式在两个不同的热力学限制中提取其渐近行为,并与数值计算相匹配。特别是,我们发现纠缠熵承认对数违反该地区法的行为减少了与区域法规模相比的纠缠数量。
We investigate multipartite information and entanglement measures in the ground state of a free-fermion model defined on a Hamming graph. Using the known diagonalization of the adjacency matrix, we solve the model and construct the ground-state correlation matrix. Moreover, we find all the eigenvalues of the chopped correlation matrix when the subsystem consists of $n$ disjoint Hamming subgraphs embedded in a larger one. These results allow us to find an exact formula for the entanglement entropy of disjoint graphs, as well as for the mutual and tripartite information. We use the exact formulas for these measures to extract their asymptotic behavior in two distinct thermodynamic limits, and find excellent match with the numerical calculations. In particular, we find that the entanglement entropy admits a logarithmic violation of the area law which decreases the amount of entanglement compared to the area law scaling.