论文标题

通过隐式化学空间中多目标进化的分子优化

Molecule optimization via multi-objective evolutionary in implicit chemical space

论文作者

Xia, Xin, Su, Yansen, Zheng, Chunhou, Zeng, Xiangxiang

论文摘要

机器学习方法已用于加速分子优化过程。但是,有效地搜索满足几种具有稀缺标记数据的优化分子仍然是机器学习分子优化的挑战。在这项研究中,我们提出了MOMO,这是一种多目标分子优化框架,可以通过将化学知识的学习与基于帕累托的多目标进化搜索相结合来应对挑战。为了学习化学,它采用自我监督的编解码器来构建隐式化学空间并获得分子的继续表示。为了探索已建立的化学空间,MOMO使用多目标进化来全面有效地搜索具有多个理想特性的类似分子。我们证明了MOMO在四个多目标属性和相似性优化任务上的高性能,并通过案例研究说明了MOMO的搜索能力。值得注意的是,我们的方法在同时优化三个目标方面显着优于以前的方法。结果表明,MOMO的优化能力,表明提高了铅分子优化的成功率。

Machine learning methods have been used to accelerate the molecule optimization process. However, efficient search for optimized molecules satisfying several properties with scarce labeled data remains a challenge for machine learning molecule optimization. In this study, we propose MOMO, a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with Pareto-based multi-objective evolutionary search. To learn chemistry, it employs a self-supervised codec to construct an implicit chemical space and acquire the continues representation of molecules. To explore the established chemical space, MOMO uses multi-objective evolution to comprehensively and efficiently search for similar molecules with multiple desirable properties. We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies. Remarkably, our approach significantly outperforms previous approaches in optimizing three objectives simultaneously. The results show the optimization capability of MOMO, suggesting to improve the success rate of lead molecule optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源