论文标题
10 au的尘埃热点在0级二进制IRAS 16293-2422 a:偏离被动辐射模型的范围
Dust hot spots at 10 au scales around the Class 0 binary IRAS 16293-2422 A: a departure from the passive irradiation model
论文作者
论文摘要
表征0类源中磁盘量表处的物理条件对于约束Protostellar积聚过程和行星形成的初始条件至关重要。我们使用ALMA 1.3 mm和3 mM观测值来研究0级IRA二进制IRA周围的灰尘的物理条件16293-2422 A(SEP <100 au)至〜10 au量表。电路材料的光谱指数Alpha的中位数为3.1,分散率为约0.2,其中没有牢固的MM尺寸晶粒证据。在两个波长处的磁盘附近,在1.3 mm处观察到具有T_B〜60-80 K的亮度温度峰的连续体子结构。这些峰不会与α的强烈变化重叠,表明它们追踪高温斑点,而不是具有显着的光学深度变化的区域。热点中推断的尘埃温度的下限为122、87和49K。取决于假定的尘埃指数,这些值可能高几倍。它们与高气温和增强的复杂有机分子(COM)发射重叠。这种新解决的尘埃温度分布与机械的期望是更好的一致,而不是最常见的辐射加热。特别是,我们发现温度与冲击加热预测一致。这项证据和最新的研究强调了0类磁盘中的积聚加热,表明机械加热(冲击,由积聚提供的耗散等)在早期阶段很重要,在建模和测量深层嵌入的原始质体和磁盘的性能时应考虑。
Characterizing the physical conditions at disk scales in Class 0 sources is crucial for constraining the protostellar accretion process and the initial conditions for planet formation. We use ALMA 1.3 mm and 3 mm observations to investigate the physical conditions of the dust around the Class 0 binary IRAS 16293-2422 A (sep <100 au) down to ~10 au scales. The circumbinary material's spectral index, alpha, has a median of 3.1 and a dispersion of ~0.2, providing no firm evidence of mm-sizes grains therein. Continuum substructures with brightness temperature peaks of T_b~60-80 K at 1.3 mm are observed near the disks at both wavelengths. These peaks do not overlap with strong variations of alpha, indicating they trace high-temperature spots instead of regions with significant optical depth variations. The lower limits to the inferred dust temperature in the hot spots are 122, 87 and 49 K. Depending on the assumed dust opacity index, these values can be several times higher. They overlap with high gas temperatures and enhanced complex organic molecular (COM) emission. This newly resolved dust temperature distribution is in better agreement with the expectations from mechanical instead of the most commonly assumed radiative heating. In particular, we find that the temperatures agree with shock heating predictions. This evidence and recent studies highlighting accretion heating in Class 0 disks suggest that mechanical heating (shocks, dissipation powered by accretion, etc.) is important during the early stages and should be considered when modeling and measuring properties of deeply embedded protostars and disks.