论文标题

卡尔曼过滤器时空估计的移动传感器路径计划

Mobile Sensor Path Planning for Kalman Filter Spatiotemporal Estimation

论文作者

Mei, Jiazhong, Brunton, Steven L., Kutz, J. Nathan

论文摘要

从有限的传感器测量中估算时空数据是许多科学学科的必需任务。传感器选择问题旨在优化传感器的放置,利用贪婪算法的创新和低级子空间投影,以提供无模型的,数据驱动的估计值。另外,Kalman滤波器估计平衡基于模型的信息和稀疏观察到的测量值,以共同进行估计,并开发了许多相关优化算法用于选择最佳传感器。大多数方法已经为固定传感器开发了,使用移动传感器估算时空数据的工作相对有限,这些移动传感器利用Kalman滤波和低级别功能。我们表明,沿动态轨迹的移动传感可以实现大量固定传感器的等效性能,并且具有与三个不同的时间表有关的性能增长:(i)时空动力学的时间尺度,(ii)传感器的速度,以及(iii)采样率。综上所述,这些时间表强烈影响估计任务的良好条件。移动传感对于包含空间局部结构的时空数据特别有效,该数据的特征沿动态轨迹捕获。我们在Kalman滤波器性能和状态空间模型的可观察性之间进行连接,并根据最小化可观察性矩阵的状况数量提出了一种贪婪的路径计划算法。通过一系列复杂性的示例,我们表明移动传感在更好地限制估计和更快的收敛性方面提高了卡尔曼滤波器的性能。

The estimation of spatiotemporal data from limited sensor measurements is a required task across many scientific disciplines. The sensor selection problem, which aims to optimize the placement of sensors, leverages innovations in greedy algorithms and low-rank subspace projection to provide model-free, data-driven estimates. Alternatively, Kalman filter estimation balances model-based information and sparsely observed measurements to collectively make an estimation, with many related optimization algorithms developed for selecting optimal sensors. The majority of methods have been developed for stationary sensors, with relatively limited work estimating spatiotemporal data using mobile sensors that leverage both Kalman filtering and low-rank features. We show that mobile sensing along dynamic trajectories can achieve the equivalent performance of a larger number of stationary sensors, with performance gains related to three distinct timescales: (i) the timescale of the spatio-temporal dynamics, (ii) the velocity of the sensors, and (iii) the rate of sampling. Taken together, these timescales strongly influence how well-conditioned the estimation task is. Mobile sensing is particularly effective for spatio-temporal data that contain spatially localized structures, whose features are captured along dynamic trajectories. We draw connections between the Kalman filter performance and the observability of the state space model, and propose a greedy path planning algorithm based on minimizing the condition number of the observability matrix. Through a series of examples of increasing complexity, we show that mobile sensing improves Kalman filter performance in terms of better limiting estimation and faster convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源