论文标题
通过无限输入输出方向通过设备进行量子通信
Quantum communication through devices with indefinite input-output direction
论文作者
论文摘要
某些量子设备(例如量子光学元件中的半波板和四分之一波板)是双向的,这意味着可以交换其输入和输出端口的作用。双向设备可以在向前模式和向后模式下使用,对应于输入输出方向的两个相反的选择。它们也可以用于向前和向后模式的连贯叠加,从而带来了不确定输入输出方向的新操作。在这项工作中,我们探讨了输入输出不确定的潜力,即通过嘈杂的通道传输经典和量子信息。我们首先通过用于不确定输入输出方向的嘈杂通道从发件人到接收器的通信模型。然后,我们表明,输入输出方向的不确定性比标准通信协议产生优势,在标准通信协议中,在固定的输入输出方向上使用给定的噪声通道。这些优势范围从双向过程中的噪声的一般降低到预示量子状态的无噪声传播,以及在某些特殊情况下,到完全消除噪声。通过当前的光子技术可以在实验上证明由于输入输入不确定性而引起的降噪功能,这提供了一种研究外来场景的操作后果的方法,其特征是远期时间和向后时间过程的相干量子叠加。
Certain quantum devices, such as half-wave plates and quarter-wave plates in quantum optics, are bidirectional, meaning that the roles of their input and output ports can be exchanged. Bidirectional devices can be used in a forward mode and a backward mode, corresponding to two opposite choices of the input-output direction. They can also be used in a coherent superposition of the forward and backward modes, giving rise to new operations with indefinite input-output direction. In this work we explore the potential of input-output indefiniteness for the transfer of classical and quantum information through noisy channels. We first formulate a model of communication from a sender to a receiver via a noisy channel used in indefinite input-output direction. Then, we show that indefiniteness of the input-output direction yields advantages over standard communication protocols in which the given noisy channel is used in a fixed input-output direction. These advantages range from a general reduction of noise in bidirectional processes, to heralded noiseless transmission of quantum states, and, in some special cases, to a complete noise removal. The noise reduction due to input-output indefiniteness can be experimentally demonstrated with current photonic technologies, providing a way to investigate the operational consequences of exotic scenarios characterised by coherent quantum superpositions of forward-time and backward-time processes.