论文标题
神经网络的筛子类似比测试,具有遗传关联研究的应用
A Sieve Quasi-likelihood Ratio Test for Neural Networks with Applications to Genetic Association Studies
论文作者
论文摘要
神经网络(NN)在现代人工智能(AI)技术中起着核心作用,并已成功用于自然语言处理和图像识别等领域。尽管大多数NN应用都集中在预测和分类上,但研究神经网络的统计推断越来越兴趣。 NN统计推断的研究可以增强我们对NN统计专有权的理解。此外,它可以促进基于NN的假设检验,可应用于假设驱动的临床和生物医学研究。在本文中,我们提出了基于NN的筛子准样比测试,其中一个隐藏层用于测试复杂的关联。测试统计量具有渐近卡方分布,因此在计算上是有效的,易于实现实际数据分析。通过模拟研究了渐近分布的有效性。最后,我们通过对阿尔茨海默氏病神经影像学计划(ADNI)进行测序数据进行遗传关联分析来证明使用了拟议的测试。
Neural networks (NN) play a central role in modern Artificial intelligence (AI) technology and has been successfully used in areas such as natural language processing and image recognition. While majority of NN applications focus on prediction and classification, there are increasing interests in studying statistical inference of neural networks. The study of NN statistical inference can enhance our understanding of NN statistical proprieties. Moreover, it can facilitate the NN-based hypothesis testing that can be applied to hypothesis-driven clinical and biomedical research. In this paper, we propose a sieve quasi-likelihood ratio test based on NN with one hidden layer for testing complex associations. The test statistic has asymptotic chi-squared distribution, and therefore it is computationally efficient and easy for implementation in real data analysis. The validity of the asymptotic distribution is investigated via simulations. Finally, we demonstrate the use of the proposed test by performing a genetic association analysis of the sequencing data from Alzheimer's Disease Neuroimaging Initiative (ADNI).