论文标题

机器学习增强贝叶斯量子状态估计的演示

Demonstration of machine-learning-enhanced Bayesian quantum state estimation

论文作者

Lohani, Sanjaya, Lukens, Joseph M., Davis, Atiyya A., Khannejad, Amirali, Regmi, Sangita, Jones, Daniel E., Glasser, Ryan T., Searles, Thomas A., Kirby, Brian T.

论文摘要

机器学习(ML)在量子信息科学中发现了广泛的适用性,例如实验设计,州分类甚至量子基础的研究。在这里,我们在实验上实现了一种定义自定义先验分布的方法,该方法是使用ML自动调整的,用于与贝叶斯量子状态估计方法一起使用。以前,研究人员由于其独特的优势(例如自然不确定性量化,在任何测量条件下的可靠估计回报)以及最小的于点误差而研究了贝叶斯量子层析成像。但是,与较长的计算时间和有关如何最合适合并知识的概念问题和概念问题有关的实践挑战可能会使这些好处蒙上阴影。使用模拟和实验测量结果,我们证明ML定义的先前分布减少了净收敛时间,并提供了一种自然的方式,将隐式和显式信息直接纳入先验分布。这些结果构成了贝叶斯量子状态断层扫描实施实际实施的有前途的途径。

Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源