论文标题
相位场裂缝界面重建的高准确框架,并应用于弹性裂缝,被弹性培养基包围
A high-accuracy framework for phase-field fracture interface reconstructions with application to Stokes fluid-filled fracture surrounded by an elastic medium
论文作者
论文摘要
这项工作考虑了与线性弹性介质相互作用的可变形断裂中的Stokes流动。为此,我们采用相位场模型来近似裂纹动力学。相位场方法属于接口捕获方法,其中仅由污迹区域给出界面。对于多域问题,耦合条件的准确性至关重要。在这里,接口跟踪方法是首选的,因为将接口在网格边缘上解析为离散误差,但不取决于某些污迹区域的长度比例参数。这项工作的关键目的是构建一个强大的框架,该框架首先通过相位场方法(接口捕获)计算破裂路径,然后进行接口跟踪重建。然后,我们讨论几种重建对开放裂纹域的欧拉尔的描述的方法。这包括未构建裂纹界面级别的未固定方法以及重新固定几何形状的方法。使用此重构域,我们可以计算裂纹和相互作用固体中流体之间的流体结构相互作用问题。通过对两个域进行明确的网格重建,我们可以使用接口跟踪的任意拉格朗日 - 欧拉(ALE)离散方法,以解决所得的流体结构交互(FSI)问题。我们的算法过程在一种最终的数值算法和一种实现中实现。我们使用基于Sneddon的基准和相应扩展的数值示例来证实我们的方法,以实现易流体填充方案的相应扩展。
This work considers a Stokes flow in a deformable fracture interacting with a linear elastic medium. To this end, we employ a phase-field model to approximate the crack dynamics. Phase-field methods belong to interface-capturing approaches in which the interface is only given by a smeared zone. For multi-domain problems, the accuracy of the coupling conditions is, however, of utmost importance. Here, interface-tracking methods are preferred, since the interface is resolved on mesh edges up to discretization errors, but it does not depend on the length scale parameter of some smeared zone. The key objective of this work is to construct a robust framework that computes first a crack path via the phase-field method (interface-capturing) and then does an interface-tracking reconstruction. We then discuss several approaches to reconstruct the Eulerian description of the open crack domain. This includes unfitted approaches where a level-set of the crack interface is constructed and an approach where the geometry is re-meshed. Using this reconstructed domain, we can compute the fluid-structure interaction problem between the fluid in the crack and the interacting solid. With the explicit mesh reconstruction of the two domains, we can then use an interface-tracking Arbitrary-Lagrangian-Eulerian (ALE) discretisation approach for the resulting fluid-structure interaction (FSI) problem. Our algorithmic procedure is realised in one final numerical algorithm and one implementation. We substantiate our approach using several numerical examples based on Sneddon's benchmark and corresponding extensions to Stokes fluid-filled regimes.