论文标题
无监督的对象本地化:观察背景以发现对象
Unsupervised Object Localization: Observing the Background to Discover Objects
论文作者
论文摘要
自我监督的视觉表示学习的最新进展为无监督的方法铺平了道路,以解决对象发现和实例细分等任务。但是,在没有监督的情况下发现对象是一项非常艰巨的任务。什么是所需的对象,什么时候将它们分为部分,有多少个,什么类?这些问题的答案取决于评估的任务和数据集。在这项工作中,我们采取了不同的方法,并建议寻找背景。这样,显着对象作为副产品出现,而没有任何强烈的假设对物体应该是什么。我们建议发现,一个由单个$ Conv1 \ times1 $制成的简单模型,该模型是用自我监督基于补丁的表示的粗糙背景掩码初始化的。在快速训练并完善了这些种子面罩之后,该模型达到了最先进的结果,因此无监督的显着性检测和对象发现基准。此外,我们表明我们的方法在无监督的语义细分检索任务中产生了良好的结果。复制我们的结果的代码可在https://github.com/valeoai/found上获得。
Recent advances in self-supervised visual representation learning have paved the way for unsupervised methods tackling tasks such as object discovery and instance segmentation. However, discovering objects in an image with no supervision is a very hard task; what are the desired objects, when to separate them into parts, how many are there, and of what classes? The answers to these questions depend on the tasks and datasets of evaluation. In this work, we take a different approach and propose to look for the background instead. This way, the salient objects emerge as a by-product without any strong assumption on what an object should be. We propose FOUND, a simple model made of a single $conv1\times1$ initialized with coarse background masks extracted from self-supervised patch-based representations. After fast training and refining these seed masks, the model reaches state-of-the-art results on unsupervised saliency detection and object discovery benchmarks. Moreover, we show that our approach yields good results in the unsupervised semantic segmentation retrieval task. The code to reproduce our results is available at https://github.com/valeoai/FOUND.