论文标题

从连续观察到的单倍型频率扩散的重组率的估计器

An estimator for the recombination rate from a continuously observed diffusion of haplotype frequencies

论文作者

Griffiths, Robert C., Jenkins, Paul A.

论文摘要

重组是一种基本的进化力,但是很难量化,因为重组事件对遗传数据样本中变异模式的影响可能很难辨别。因此,重组率的估计量通常基于在样本的未观察到可能的进化历史上整合的想法,因此可能是嘈杂的。在这里,我们考虑一个相关的问题:估计器是否实际观察到进化史将如何行事?这将为实践中使用的估计器的性能提供上限。在本文中,我们基于连续观察到的多层次,赖特(Wright)的重组率的最大似然估计量的表达式 - 单倍型频率的扩散,以补充现有工作的选择估计器。我们表明,与选择相反,估算器具有异常的属性,因为观察到的信息矩阵可以在有限的时间内爆炸,因此将重组参数毫无疑问地学习。我们还表明,重组估计量对选择的意义具有鲁棒性,从而将选择纳入模型的意义使估计量保持不变。我们通过模拟研究估计量的性质,并表明其分布可能对基本突变速率非常敏感。

Recombination is a fundamental evolutionary force, but it is difficult to quantify because the effect of a recombination event on patterns of variation in a sample of genetic data can be hard to discern. Estimators for the recombination rate, which are usually based on the idea of integrating over the unobserved possible evolutionary histories of a sample, can therefore be noisy. Here we consider a related question: how would an estimator behave if the evolutionary history actually was observed? This would offer an upper bound on the performance of estimators used in practice. In this paper we derive an expression for the maximum likelihood estimator for the recombination rate based on a continuously observed, multi-locus, Wright--Fisher diffusion of haplotype frequencies, complementing existing work for an estimator of selection. We show that, contrary to selection, the estimator has unusual properties because the observed information matrix can explode in finite time whereupon the recombination parameter is learned without error. We also show that the recombination estimator is robust to the presence of selection in the sense that incorporating selection into the model leaves the estimator unchanged. We study the properties of the estimator by simulation and show that its distribution can be quite sensitive to the underlying mutation rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源