论文标题

随机着色过程可改善对广义Ramsey数字的Erdős-Gyárfás问题的界限

A random coloring process gives improved bounds for the Erdős-Gyárfás problem on generalized Ramsey numbers

论文作者

Bennett, Patrick, Dudek, Andrzej, English, Sean

论文摘要

erdős-gyárfás数字$ f(n,p,q)$是为完整图$ k_n $的边缘上色所需的最小颜色,因此其所有$ p $ clique-clique-clique-clique跨度至少至少$ q $颜色。在本文中,我们改善了$ f(n,p,q)$ $ p,q $和大型$ n $的最著名的上限(n,p,q)$。我们的证明使用随机着色过程,我们使用所谓的微分方程方法来分析该过程来建立动态浓度。

The Erdős-Gyárfás number $f(n, p, q)$ is the smallest number of colors needed to color the edges of the complete graph $K_n$ so that all of its $p$-clique spans at least $q$ colors. In this paper we improve the best known upper bound on $f(n, p, q)$ for many fixed values of $p, q$ and large $n$. Our proof uses a randomized coloring process, which we analyze using the so-called differential equation method to establish dynamic concentration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源