论文标题

过渡性高超触觉边界层的冲击撞击

Shock impingement on a transitional hypersonic high-enthalpy boundary layer

论文作者

Passiatore, Donatella, Sciacovelli, Luca, Cinnella, Paola, Pascazio, Giuseppe

论文摘要

首次通过直接的数值模拟研究了冲击波撞击热化学平衡的过渡高触觉边界层的动力学。自由电气的马赫数等于9,倾斜冲击撞击了一个冷却的平板边界层,角度为10°,产生了逆转流动区域。与自由式干扰结合使用,冲击撞击会触发向相互作用区域下游的完全湍流状态的过渡。因此,壁性能强调了层状区域的存在,再循环气泡,过渡区和完全湍流区域。由于特殊的冲击模式,对湍流的崩溃的特征是皮肤摩擦和壁热通量异常增加。在所考虑的热力学条件下,发现流动的流动状态一直处于热非平衡状态,由于造成的层流/湍流过渡增强和维持了非平衡效应,而由于墙壁冷却,化学活性几乎可以忽略不计。在相互作用区域中,朝着热平衡的放松被延迟,尽管壁冷却很强,但旋转转换的波动值和振动温度的波动差异很大。完全湍流的部分表现出流向速度的发展,雷诺(Reynolds)的应力和湍流的马赫数很好地符合先前的热量非平衡中高度压缩的冷却壁边界层的结果,并且湍流运动持续热非排量。然而,发现振动能对总壁热通量几乎没有贡献。

The dynamics of a shock wave impinging on a transitional high-enthalpy boundary layer out of thermochemical equilibrium is investigated for the first time by means of a direct numerical simulation. The freestream Mach number is equal to 9 and the oblique shock impinges with a cooled flat-plate boundary layer with an angle of 10°, generating a reversal flow region. In conjunction with freestream disturbances, the shock impingement triggers a transition to a fully turbulent regime shortly downstream of the interaction region. Accordingly, wall properties emphasize the presence of a laminar region, a recirculation bubble, a transitional zone and fully turbulent region. The breakdown to turbulence is characterized by an anomalous increase of skin friction and wall heat flux, due to the particular shock pattern. At the considered thermodynamic conditions the flow is found to be in a state of thermal non-equilibrium throughout, with non-equilibrium effects enhanced and sustained by the shock-induced laminar/turbulent transition, while chemical activity is almost negligible due to wall cooling. In the interaction region, relaxation towards thermal equilibrium is delayed and the fluctuating values of the rototranslational and the vibrational temperatures strongly differ, despite the strong wall-cooling. The fully turbulent portion exhibits evolutions of streamwise velocity, Reynolds stresses and turbulent Mach number in good accordance with previous results for highly-compressible cooled-wall boundary layers in thermal nonequilibrium, with turbulent motions sustaining thermal nonequilibrium. Nevertheless, the vibrational energy is found to contribute little to the total wall heat flux.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源