论文标题

在SALT3模型培训过程中传播不确定性到宇宙学约束

Propagating Uncertainties in the SALT3 Model Training Process to Cosmological Constraints

论文作者

Dai, M., Jones, D. O., Kenworthy, W. D., Kessler, R., Pierel, J. D. R., Foley, R. J., Jha, S. W., Scolnic, D. M.

论文摘要

IA型超新星(SNE IA)是可标准化的蜡烛,必须在经验上进行建模才能产生宇宙学的约束。为了了解这种建模对模型训练程序中变化的鲁棒性,我们建立了一条端到端管道来测试最近开发的salt3模型。我们探讨了删除2000年代前低$ z $或校准$ u $ band数据的后果,调整SN IA Spectra的数量和保真度,并使用独立的模型框架来模拟培训数据。我们发现,通过拥有额外的光谱和$ u $ band数据来改善Salt3模型表面,如果主机Galaxy污染不够从SN光谱中消除,则可以将$ \ sim 5 \%$转移。我们发现,对于这项工作中探索的所有培训变体的$ W $的测量值在$ 2.5 \%$之内是一致的,其中最大的变化来自添加颜色依赖性校准偏移量或寄主星系污染的变体,以及那些删除2000年代前$ z $ z $ Z $数据的变体。这些结果表明,SALT3模型训练程序对于训练数据的合理差异基本上是强大的,但是必须在训练过程中对光谱数据的治疗进行额外的关注。我们还发现,训练过程对输入数据的颜色分布很敏感。如果颜色分布不够宽,则将产生的$ w $测量值可能会偏向$ \ sim2 \%$。未来的低$ z $数据,尤其是$ u $ band观测值和高信噪比SN IA IA Spectra,将有助于在未来几年中显着改善SN IA建模。

Type Ia supernovae (SNe Ia) are standardizable candles that must be modeled empirically to yield cosmological constraints. To understand the robustness of this modeling to variations in the model training procedure, we build an end-to-end pipeline to test the recently developed SALT3 model. We explore the consequences of removing pre-2000s low-$z$ or poorly calibrated $U$-band data, adjusting the amount and fidelity of SN Ia spectra, and using a model-independent framework to simulate the training data. We find the SALT3 model surfaces are improved by having additional spectra and $U$-band data, and can be shifted by $\sim 5\%$ if host galaxy contamination is not sufficiently removed from SN spectra. We find that resulting measurements of $w$ are consistent to within $2.5\%$ for all training variants explored in this work, with the largest shifts coming from variants that add color-dependent calibration offsets or host galaxy contamination to the training spectra, and those that remove pre-2000s low-$z$ data. These results demonstrate that the SALT3 model training procedure is largely robust to reasonable variations in the training data, but that additional attention must be paid to the treatment of spectroscopic data in the training process. We also find that the training procedure is sensitive to the color distributions of the input data; the resulting $w$ measurement can be biased by $\sim2\%$ if the color distribution is not sufficiently wide. Future low-$z$ data, particularly $u$-band observations and high signal-to-noise ratio SN Ia spectra, will help to significantly improve SN Ia modeling in the coming years.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源